Evaluating the long-term clinical, societal, and economic outcomes of of atumumab vs teriflunomide / interferon β -1a and the impact of early vs delayed of atumumab initiation in relapsing multiple sclerosis patients in Greece

Antonios Petropoulos¹, Umakanth Vudumula², Mausam Patidar³, Santosh Tiwari³, Roisin Brennan², Katerina Kapsogeorgiou¹, Georgios Cheilas¹, Judit Banhazi⁴

¹Novartis Hellas SACI, Athens, Greece; ²Novartis Ireland Limited, Dublin, Ireland; ³Novartis Healthcare Private Limited, Hyderabad, India

⁴Novartis Pharma AG, Basel, Switzerland

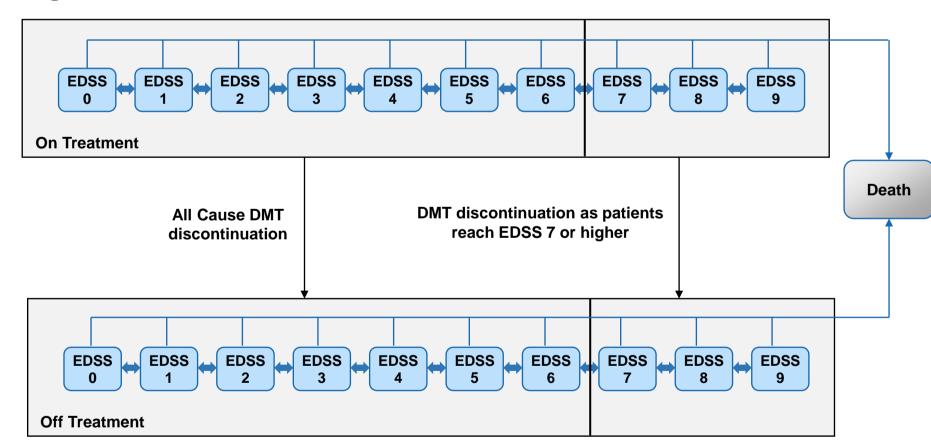
Background

- Multiple sclerosis (MS) is a debilitating, neurological disease that typically affects people during their prime working years.¹ According to a previous Greek study, the mean annual cost per patient was estimated at €26,118, with higher costs among those with severe (€45,442) compared with mild and moderate (€32,126), and mild MS (€20,702).²
- Ofatumumab (Kesimpta®; OMB) is a fully human anti-CD20 monoclonal antibody approved in March 2021 in Europe for the treatment of adults with relapsing multiple sclerosis (RMS).³ The efficacy and safety of OMB has been demonstrated in two pivotal clinical trials (ASCLEPIOS I & II).⁴ However, the cost and consequences of OMB compared to teriflunomide (TERI) or interferon β-1a (IFN-β-1a) in patients with RMS remains unexplored in Greece.

Objective

 To estimate the long-term clinical, societal, and economic outcomes of OMB vs TERI or IFN-β-1a and evaluate the impact of early (at first-line) vs delayed (3-year / 5-year delay) OMB initiation in RMS patients from a Greek societal perspective.

Methods


Study Population and Intervention

- The patient population considered in this model was aligned to the population included in the ASCLEPIOS I & II trials.⁴ The mean age of the cohort was 38.2 years (standard error: 0.005), 32.4% were male, and had a baseline expanded disability status scale (EDSS) scores between 0–5.5 (with an average EDSS score of 2.9).⁴
- The interventions considered were OMB 20 mg administered subcutaneously once every month, comparators considered were TERI 14 mg administered orally once daily and IFN β -1a 44 μ g/0.5ml (equivalent to 12 million international units [MIU]) administered subcutaneously three times per week. 3,5,6

Model Structure and Inputs

- A discrete time Markov model based on EDSS health states
 (EDSS 0=neurologically normal; EDSS 10= death) was developed
 in Microsoft Excel® to simulate the natural history of disease
 progression in RMS patients.
- During each cycle of the model, patients could remain at the same EDSS state or move to a higher/lower EDSS state or dead, as well as experience a relapse (**Figure 1**).
- The analysis was conducted using a hypothetical cohort of RMS patients with cycle length of 1-year and time horizon of 10 years.

Figure 1. Model structure

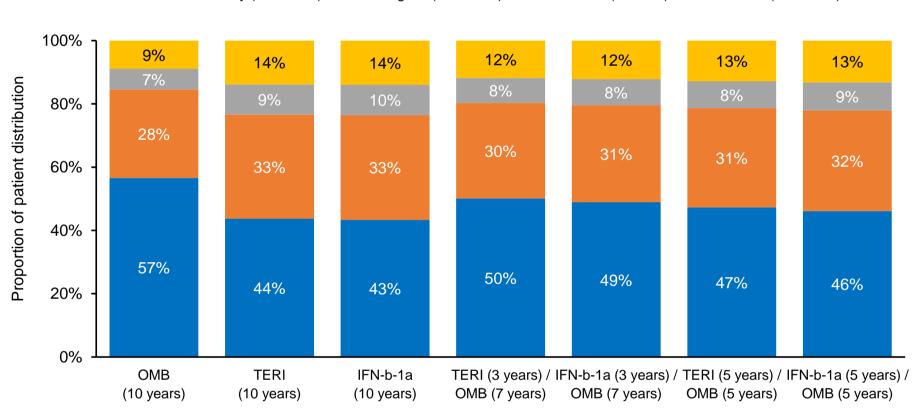
DMT, disease modifying therapy; EDSS, expanded disability status scale.

- The transition probabilities between EDSS states of the untreated model were based on the British Colombia natural history dataset.⁷ The annual relapse rate (ARR) by EDSS during the untreated course of the disease were based on a study of British MS patients and a prospective long-term study natural history data.^{8,9}
- For the treatment-adjusted model, the hazard ratio (HR) for time to 6-month confirmed disability progression (CDP), rate ratio (RR) for ARR, were sourced from a network meta-analysis.⁹ The annual discontinuation rates for OMB, TERI and IFN-β-1a were sourced from ASCLEPIOS trials and a network meta-analysis.^{4,10}
- Mortality rates for the general population were derived from the age- and gender specific mortality rates for Greece,¹¹ adjusted for the MS population using the mortality multipliers reported in the literature.¹²
- Productivity loss data (% retired early, informal care), disability weights of health states, and disease-related costs were retrieved from published literature and the official price list.^{2,13,14} Additionally, relapse management costs were applied according to the severity of relapse (mild, moderate, and severe).¹⁵
- Four scenarios with a time horizon of 10 years were simulated.
 - The two base scenarios evaluated OMB (i.e., 10 years on OMB) versus TERI (i.e., 10 years on TERI) or IFN-β-1a (i.e., 10 years on IFN-β-1a) without any treatment switches.
 - The third scenario simulated a 3-year delay in OMB treatment (i.e., 3-year treatment with TERI or IFN-β-1a followed by 7-year OMB treatment)
 - The fourth scenario simulated a 5-year delay in OMB treatment (i.e., 5-year treatment with TERI or IFN-β-1a followed by 5-year OMB treatment)

Model Assumptions

- Treatment effects were applied in the model in the form of delaying disability progression and reducing the number of relapses.
- Patients were assumed to discontinue treatment and move to best supportive care either when they reach EDSS 7 or higher or all cause discontinuation in line with ASCLEPIOS trials.⁴

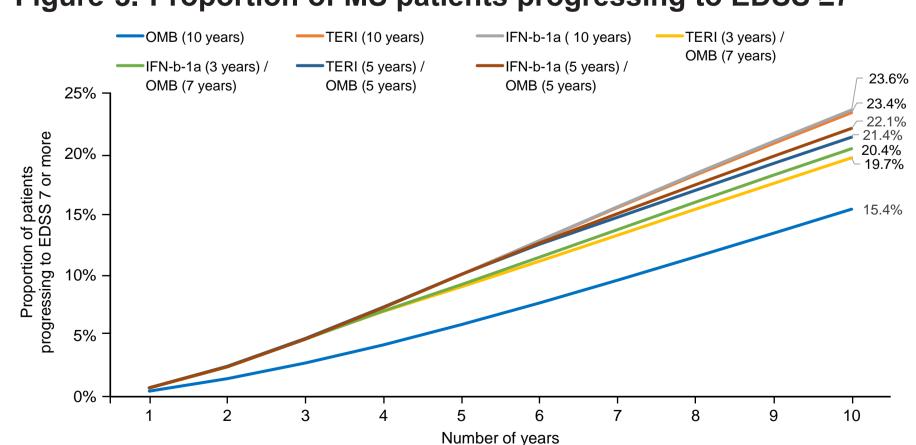
Model Outcomes


- Clinical outcomes included the distribution of patients in the different EDSS states, the time spent in different health states, the proportion of patients with increased disability (EDSS ≥7), number of relapses suffered, and productivity measures (% employed and % early retired). Additionally, the number of disability-adjusted life years (DALYs) was calculated as the sum of the years of life lost (YLL) due to premature mortality and years lived with disability (YLD).¹³
- Economic outcomes included direct, relapse, and indirect costs.
 Direct costs comprised healthcare costs (drug cost, disease
 management, drug administration and monitoring, adverse event
 management and non-medical). Relapse costs were those
 associated with the management of relapse events. Indirect costs
 were costs associated with MS-related productivity loss (% early
 retired). All costs are expressed in 2021 Euros.

Results

At the end of 10 years, the proportion of patients in the mild disability state (EDSS 0-3) was projected to be higher in the OMB cohort (57%) vs TERI (44%) or IFN-β-1a (43%) cohorts (Figure 2). Moreover, patients in OMB cohort stayed longer in mild disability state as compared those in the TERI or IFN-β-1a cohort.

Figure 2. Patient distribution in MS health states at the end of 10 years


Mild disability (EDSS 0-3) Walking aid (EDSS 4-6) Wheelchair (EDSS 7) Bedridden (EDSS 8-9)

EDSS, expanded disability status scale; OMB, ofatumumab; TERI, teriflunomide; MS,

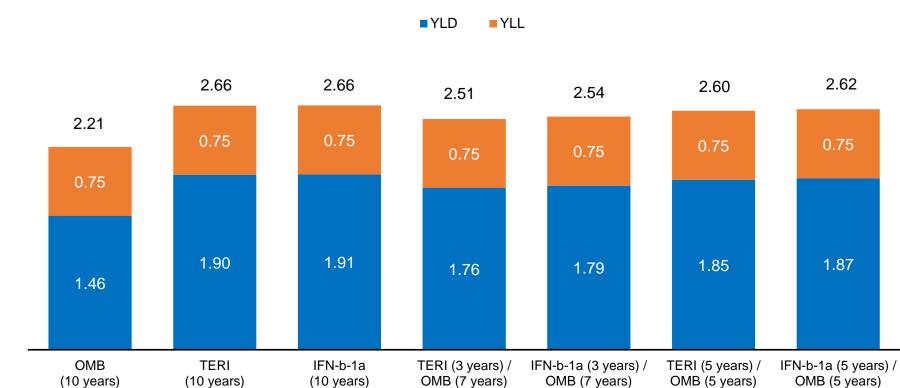
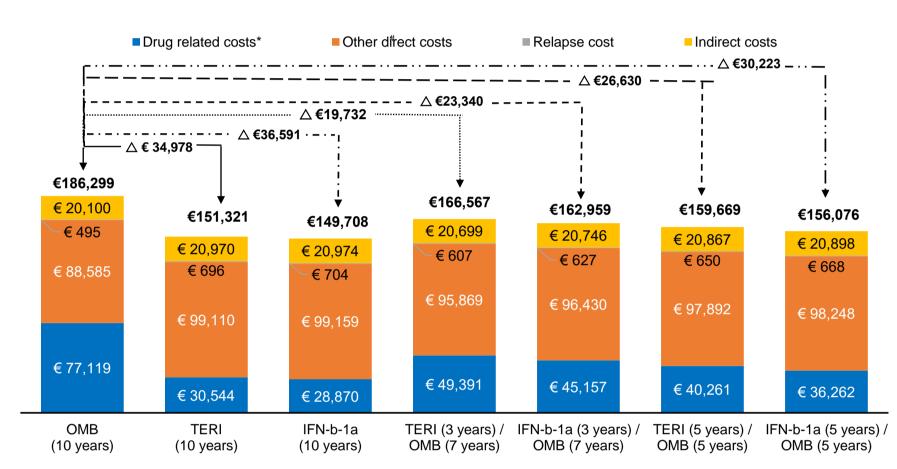

- At the end of 10 years, the proportion of patients progressing to EDSS ≥7 was projected to be lower in OMB cohort (15.4%) compared to TERI (23.4%) or IFN-β-1a (23.6%) (**Figure 3**). Furthermore, patients initiating OMB at the first line were projected to experience fewer relapses (3.79) compared with the TERI (5.26) or IFN-β-1a (5.32) cohorts.
- At the end of 10 years, the percentage of patients who retired early was relatively lower (35% vs 39% & 39%) in the OMB cohort compared with the TERI or IFN-β-1a cohort. Additionally, patients in the OMB cohort required 23% less informal care (194 vs 239 & 239 days) and experience reduction in DALYs (2.21 vs 2.66 & 2.66) compared with the TERI or IFN-β-1a cohort (**Figure 4**).
- A 3-year delay in the initiation of OMB treatment was estimated to result in increased proportion (19.7% [TERI] or 20.4% [IFN-β-1a] vs 15.44% [OMB]) of patients progressing to EDSS ≥7 (**Figure 3**), more relapses (4.56 [TERI] or 4.72 [IFN-β-1a] vs 3.79 [OMB]), increased informal care time (225 [TERI] or 227 [IFN-β-1a] vs 194 days [OMB]), and more DALYs compared with early initiation of OMB treatment (**Figure 4**). Furthermore, productivity was lower (i.e., 37% [TERI] or 38% [IFN-β-1a] vs 35% [OMB] less employed) in patients with delayed vs early OMB initiation.

Figure 3. Proportion of MS patients progressing to EDSS ≥7

EDSS, expanded disability status scale; OMB, ofatumumab; TERI, teriflunomide; MS, multiple sclerosis.


Figure 4. Disability-adjusted life years

EDSS, expanded disability status scale; OMB, ofatumumab; TERI, teriflunomide; YLD, years lived with disability; YLL, years of life lost.

- Even though early OMB initiation was projected to result in an increase in the drug costs (€77,026) vs TERI (€29,698) or IFN-β-1a (€28,578), it eventually gets partially offset by other direct costs (i.e., inpatient care, outpatient care, consultations, investigations, MS-related comorbidities, over-the-counter drugs, informal care, MS-related investments, and professional assistance), and indirect cost savings.
- In addition to the clinical benefits, patients receiving OMB were estimated to incur 11% lower costs (including other direct costs, relapse cost and indirect cost) compared with TERI or IFN-β-1a cohorts (€109,180 vs €120,776 or €120,837 per patient).
- Additionally, a 3-year delay in OMB initiation was projected to result in 8% more costs (including other direct costs, relapse cost and indirect cost) compared to those with early OMB initiation (€109,180 per patient) vs TERI (€117,175 per patient) or IFN-β-1a (€117,803 per patient) (Figure 5). Similar results were seen when OMB initiation was delayed by 5 years (5-year TERI or IFN-β-1a followed by 5-year OMB) (Figure 5).

Figure 5. Total Annual Cost (per patient) at the end of 10 years

OMB, ofatumumab; TERI, teriflunomide.

Note: *Includes drug acquisition, administration & monitoring costs, and adverse event management costs

*Includes inpatient care, outpatient care, consultations, investigations, MS-related comorbidities, over-the-counter drugs, informal care, MS-related investments, and professional assistance

Conclusions

- At the end of 10 years, patients receiving OMB are projected to experience comparatively better outcomes (clinical and economic) than those receiving TERI or IFN-β-1a.
- Furthermore, early initiation of high-efficacy therapy such as OMB vs its delayed initiation (3-year/5-year delay) was projected to provide long-term clinical, societal, and economic benefits in RMS patients.

References

- 1. Vijayasingham L, et al. Degener Neurol Neuromuscul Dis. 2018;8:15–24.
- 2. Yfantopoulos J, et al. *Pharmacoeconomics*. 2015;1:102.
- 3. Ofatumumab (Kesimpta®). European Medicines Agency. Available from: https://www.ema.europa.eu/en/documents/overview/kesimpta-epar-medicine-overview_en.pdf (accessed September 2022).
- 4. Hauser SL, et al. *N Engl J Med.* 2020;383(6):546–57.
- Teriflunomide (Aubagio®) Summary of Product Characteristics. Available from: https://www.ema.europa.eu/en/documents/product-information/aubagio-epar-product-information_en.pdf (accessed September 2022).
- 6. Interferon β-1a (Rebif®). European Medicines Agency. Available from: https://www.ema.europa.eu/en/documents/product-information/rebif-epar-product-information_en.pdf (accessed September 2022).
- 7. Palace J, et al. *BMJ Open.* 2014;4(1):e004073.
- 8. Orme M, et al. *Value Health*. 2007;10(1):54–60.
- 9. Patzold U, et al. *Acta Neurol Scand.* 1982;65(4):248–66.
- 10. Samjoo IA, et al. *J Comp Eff Res.* 2020;9(18):1255–74.11. Eurostat. Life table by age and sex. Greece. Available from:
- https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Mortality and life expectancy statistics (accessed September 2022).
- 12. Jick SS, et al. *J Neurol.* 2014;261(8):1508–17.
- 13. Cho JY, et al. *Mult Scler.* 2014;20(9):1217–23.
- 14. Ministry of Health. Price Bulletin and Positive List. Available from: https://www.moh.gov.gr/articles/times-farmakwn (accessed September 2022).
- 15. Υπουργική Απόφαση Καθορισμός ύψους αμοιβής και αριθμού επισκέψεων των συμβεβλημένων ιατρών με τον ΕΟΠΥΥ. Αριθμός Υ9/οικ 37139. 2014: Εφημερίδα της Κυβέρνησης της Ελληνικής Δημοκρατίας.ΦΕΚ Λίστα ΚΕΝ από 1/3/2012 (N28M) (accessed September 2022).

Disclosures

This study was funded by Novartis Pharma AG, Basel, Switzerland. Antonios Petropoulos, Umakanth Vudumula, Mausam Patidar, Santosh Tiwari, Roisin Brennan, Katerina Kapsogeorgiou, Georgios Cheilas, and Judit Banhazi are employees of Novartis.

Copyright[©] 2022 Novartis Pharma AG. All rights reserved.

Poster presented at the ISPOR Europe 2022, Vienna, Austria I November 6-9, 2022

Visit the web at: http://novartis.medicalcongressposters.com/Default.aspx?doc=38620

Copies of this poster obtained through Quick Response (QR) code are for personal use only and may not be reproduced without written permission of the authors

written permission of the authors

Presenter email address: antonios.petropoulos@novartis.com