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AN UPDATE ON REAL-TIME APPLICATION OF MACHINE LEARNING PROGRAMS
TO IMPROVE CARDIOVASCULAR RISK PREDICTION IN EUROPEAN POPULATION
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* According to European Cardiovascular Disease Statistics True Health Condition
2019, Cardiovascular disease (CVD) is responsible for ~3.9 ‘
million deaths in Europe each year [1]. —

° ML algorithms identified diabetes, obesity, heart failure (HF)
~and hypertension as key CVD risk factors [8-13] (Figure 4).

False Positive ° For prediction of diabetes, AutoPrognosis, logistic regression
~ (LR), cox regression (CR) and gradient boosting (GB) models had
a pooled AUCROC of 0.71, 0.82, 0.73 and 0.68, respectively

[8][9](Figure 5).

For prediction of obesity, LR and CR models had a pooled
AUCROC of 0.75 and 0.82 [10](Figure 5).

* For prediction of HF and hypertension, LR, GB, and custom-built
- models had a pooled AUCROC of 0.73, 0.80, and 0.89,
respectively [9][11](Figure 5).

e CVD places a substantial financial burden on the health

care systems in Europe [2]. Diagnosis —

False Negative

 Current approaches for CVD risk prediction include tools
such as Cardiovascular Risk Score (QRISK2) , Framingham ,
Reynolds etc. [3][4].
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* However, these fail to identify individuals at CVD risk,
while others receive unnecessary intervention [3][4].

 Artificial intelligence/machine learning (Al/ML) represents a
powerful framework to recognise complex patterns in
large-scale clinical data with the potential to improve risk
prediction [3].

* Notably, CVD-related hospitalisation and mortality risk was also
 accurately predicted by RF and AdaBoost models (AUCROC:
0.83, 0.78), respectively [12][13](Figure 5).
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e Recently, Al/ML has shown promise in CVD risk prediction

[3] and offers a unique opportunity to improve accuracy by
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Figure-2: Database Search Strategy Figure 4: ML algorithms used in prediction of CVD risk factors.
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