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• According to European Cardiovascular Disease Statistics
2019, Cardiovascular disease (CVD) is responsible for ∼3.9
million deaths in Europe each year [1].

• CVD places a substantial financial burden on the health
care systems in Europe [2].

• Current approaches for CVD risk prediction include tools
such as Cardiovascular Risk Score (QRISK2) , Framingham ,
Reynolds etc. [3][4].

• However, these fail to identify individuals at CVD risk,
while others receive unnecessary intervention [3][4].

• Artificial intelligence/machine learning (AI/ML) represents a
powerful framework to recognise complex patterns in
large-scale clinical data with the potential to improve risk
prediction [3].

• Recently, AI/ML has shown promise in CVD risk prediction
[3] and offers a unique opportunity to improve accuracy by
exploiting complex interactions between CVD risk factors
(Figure 1) [3][4].

• Based on the patient data available, there are currently four
types of ML algorithms: supervised, semi-supervised,
unsupervised and reinforcement [4].

Figure-1: Key role of AI/ML in cardiovascular medicine and 
research [5] 

Background

Objective

The study aimed to :

• Summarise the composite predictive ability of AI/ML
algorithms to improve CVD risk prediction in focused
populations.

• Determine the most common CVD risk factors by the various
ML algorithm.

Methods

Database Search

• PubMed, EMBASE, and
Cochrane were searched
from 2018 to 2022 to
identify the most recent
literature reporting the use
of AI/ML in predicting CVD
risk analysis (Figure 2).

• A total of 50 articles
published in English were
selected, focusing on
geography and algorithms
employed.

• 6 studies were further
excluded from the analysis
due to unavailability of
sufficient data.

Figure-2: Database Search Strategy

Figure-3: Calculation of AUROC [6][7]

• ML algorithms identified diabetes, obesity, heart failure (HF)

and hypertension as key CVD risk factors [8-13] (Figure 4).

• For prediction of diabetes, AutoPrognosis, logistic regression

(LR), cox regression (CR) and gradient boosting (GB) models had

a pooled AUCROC of 0.71, 0.82, 0.73 and 0.68, respectively

[8][9](Figure 5).

• For prediction of obesity, LR and CR models had a pooled

AUCROC of 0.75 and 0.82 [10](Figure 5).

• For prediction of HF and hypertension, LR, GB, and custom-built

models had a pooled AUCROC of 0.73, 0.80, and 0.89,

respectively [9][11](Figure 5).

• Notably, CVD-related hospitalisation and mortality risk was also

accurately predicted by RF and AdaBoost models (AUCROC:

0.83, 0.78), respectively [12][13](Figure 5).

Figure 4: ML algorithms used in prediction of CVD risk factors. 

Conclusion

• Our targeted review summarises that AI/ML models may

accurately predict CVD risk factors in European populations.

• AI/ML techniques can be useful for early identification of

high-risk individuals for developing CVD.

• This can guide clinicians/policy makers to make informed

decisions regarding early therapeutic interventions, thereby

reducing CVD risk burden.

• However, more research is warranted to evaluate other

CVD-related risk factors and to also include ML as a part of

large population-based CVD risk assessment tools and

databases.
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Table 1: Study findings (n=44)

• In the included studies, a total of 2,620,577 individuals were

analysed. The study findings are elaborated in Table 1.

• The area under the receiver operating characteristic curve
(AUCROC) was used to quantify the improvement over random
chance (AUCROC: 0.5).

• AUC summarizes the overall diagnostic accuracy of the test.

• It takes values from 0 to 1, where a value of 0 indicates a
perfectly inaccurate test and a value of 1 reflects a perfectly
accurate test [6].

• Sensitivity or true positive rate measures the ability of a model
to correctly identify positive examples.

• Specificity measures the proportion of true negatives that are
correctly identified by the model [6](Figure 3).

Sensitivity = (True Positive)/(True Positive + False Negative)

Specificity = (True Negative)/(True Negative + False Positive)

Results

Figure-5: ROC curves for the prediction of CVD risk factors using various
ML algorithms.

Characteristics n (%)

Study design

Observational 18 (41 %)

Experimental 26 (59 %)

Year of publication

2017 5 (11%)

2018 4 (9%)

2019 9 (21%)

2020 5 (11%)

2021 13 (30%)

2022 8 (18%)

Nation

Europe 44 (100%)

Total sample size 2,620,577

Sample size

<100 5 (11%)

101–1000 11 (25%)

1001–10,000 14 (32%)

10,001–100,000 6 (14%)

>100,000 8 (18%)

Machine Learning Categories

Supervised 39 (87%)

Unsupervised 3 (8%)

Semi-supervised 2(5%)
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