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Indirect Comparisons: Assumption

• Biased if there are imbalances in effect modifiers  
between AB and AC

• Population Adjusted Indirect Comparisons have been 
proposed to adjust for this
• when there is IPD for AB study and aggregate data for the 

AC study
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Matching-Adjusted Indirect Comparison (MAIC)
Signorovitch et al. (2010)

• Population reweighting method (similar to propensity score re-weighting)
• Weight AB individuals to balance covariate distribution with AC trial
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Matching-Adjusted Indirect Comparison (MAIC)
Signorovitch et al. (2010)

• Population reweighting method (similar to propensity score re-weighting)
• Weight AB individuals to balance covariate distribution with AC trial
• Requires AC population to be contained in the AB population
• Estimates are valid for the AC (Aggregate Data) population
• Cannot be used for networks of evidence
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Simulated Treatment Comparisons (STC)
Ishak et al. (2015)

• Create an outcome regression model in the AB trial
• Use this to predict mean outcomes on treatments A and B in the AC trial population
• Can handle some lack of overlap, but relies on extrapolation
• Estimates are valid for the AC (Aggregate Data) population
• Vulnerable to aggregation bias
• Cannot be used for networks of evidence
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Multilevel Network Meta-Regression (ML-NMR)
Phillippo et al (2020)

• Combines IPD and Aggregate Data 
• Using an individual-level regression model integrated over 

covariate distribution

• General framework 
• Builds on previous approaches

• Jackson et al. (2006, 2008), Jansen (2012)
• Special cases

• Standard NMA with no adjustment
• IPD network meta-regression with full IPD

• Can be used in networks of all sizes 
• Produces estimates in any specified target population
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ML-NMR: Assumptions about EM Interactions

• Common/shared EM interactions
• May be justified for treatment classes

• Independent EM interactions
• Requires IPD, or several AgD studies at different covariate 

values, on each treatment

• Exchangeable EM interactions
• Similar data requirements to independent EM interactions
• Hard to estimate in practice
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Example: Plaque Psoriasis (ML-NMR)
• Two treatment classes (plus placebo)

• IL blocker
• anti-TNFa

AgDIPD
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Identifying Important Covariates
• Based on individual patient data

• Interaction tests / subgroup analyses / regression models ... 
but lack of power

• Expert clinical opinion / previous studies
• Need to be reported in all studies

• omit individuals with missing covariates, or use imputation 
techniques

• Five covariates identified in psoriasis example
• duration of psoriasis, body surface area, weight, previous 

systemic treatment, psoriatic arthritis

• Shared effect modifier assumption made for treatments 
within the same class
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• Produce a full set of coherent estimates
• Reduced uncertainty compared to MAIC
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• Produce a full set of coherent estimates - in any target population
• Reduced uncertainty compared to MAIC
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• Produce a full set of coherent estimates - in any target population
• Reduced uncertainty compared to MAIC
• Substantially reduced uncertainty compared to RE NMA
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Findings from a Simulation Study
Phillippo 2020

• ML-NMR and STC both performed similarly well throughout
• Both incur bias when extrapolation or shared EM assumption invalid
• ML-NMR not seen to be sensitive to additional assumptions regarding 

joint covariate distribution in AgD population

• MAIC performed poorly in almost all scenarios, in some cases 
even increasing bias compared to a standard Bucher IC
• Especially with small sample sizes
• Needs full overlap to be unbiased, and for stable estimation of SE

• All methods susceptible to bias (and resulting under-coverage) 
when missing any EMs
• Highlights the need for careful, justified variable selection (TSD 18)
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Recommendations for Practice

• Use regression methods (ML-NMR, STC) over weighting 
methods (MAIC) when populations do not fully overlap 
• i.e. when AgD study population not fully contained within IPD 

population
• Important to examine covariate distributions, and ESS for 

MAIC

• Use network meta-analysis based methods (ML-NMR) 
when presented with more than 2 studies
• Repeated MAIC/STC will not give coherent or compatible 

estimates
• Standard heterogeneity and inconsistency checks can assess 

assumptions in connected networks
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