Cost Effectiveness of Novel Antibiotic Imipenem/Cilastatin/Relebactam in Gram-Negative Infections in Greece

Authors: Yfantopoulos N.T¹, Mintzia E.¹, Bafaloukos I¹., Yang. J², Ntontsi P.¹, Skroumpelos A.¹, Karokis A.¹ 1:MSD Greece, 2: Center for Observational and Real-World Evidence (CORE), Merck & Co., Inc., Rahway, NJ, USA,

CONTACT INFORMATION: Nikolaos T. Yfantopoulos(nikolaos-themistoklis.yfantopoulos@merck.com)

ISPOR Europe 2022; Vienna, Austria; November 6-9, 2022

INTRODUCTION

- Antibiotic Resistance is one of the biggest threats to global health and poses a significant burden on healthcare systems. , especially in Greece .
 - An EARS-NET ECDC based data analysis found higher burden due to carbapenem- & CMS+IMI-resistance in Greece than in Italy among higher antibiotic resistance than other EU and EEA countries ³.
 - "COVID-19 may have exacerbated the challenges of antimicrobial resistance in Greece 4.
- Call for prudent use of novel antibiotics against carbapenem resistance in Greece may be timelier than ever.

AIM

This study assesses the cost-effectiveness of imipenem/cilastatin/relebactam (Imi/Rel) for the treatment of complicated intra-abdominal infections (cIAI), complicated urinary tract infections (cUTI) including pielonephritis, and hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) caused by carbapenem resistant (CR) Gram-negative (GN) bacteria in Greece. The comparator for this analysis is colistin+imipenem (CMS+IMI).

METHODS

Description of the model structure

- The model compares IMI/REL to CMS+IMI.
- The cause is assumed confirmed carbapenem-resistance.
 - In the long-term model, patients cured in the short-term are either cured or dead.
 - Cured patients in the long-term model follow general population mortality.
- Patients who remain alive but uncured following the treatment period are assumed to die in hospital within a year (in line with expert clinical opinion).

Data sources

- . Disease distribution data: RESTORE IMI 1 clinical trial (mITT population) after validation by a clinical specialist ⁵.
- Time horizon: 45 years. Costs and health outcomes discounted at 3.0% annually. The model has been adapted from the payer's perspective.

Table 1: Percentage of Patients with each type of Infection

Percentage of Patients with each Infection type					
Proportion of HABP/VABP	35.5%	Source: RESTORE –IMI 1			
Proportion of cIAI	12.9%	Source: RESTORE –IMI 1			
Proportion of cUTI	51.6%	Source: RESTORE –IMI 1			

Figure 1: Treatment Setting in the model

Figure 2: Long-term model structure

RESULTS

Results of the model's base-case analysis

- 29.9% of patients who received CMS+IMI are projected to die within 1 year.
- 14.9% of patients who will received Imi/Rel to die within 1 year (Table 3).
- Patients in the CMS+IMI treatment arm: 18.14 LY's at a cost of 23,874€.
- Patients in the Imi/Rel arm: 22.00 LY's at a cost of 24,690€.
- The ICER for Imi/Rel was 211€ per LY gained compared to Meropenem.

Deterministic Sensitivity Analysis

- A Deterministic Sensitivity Analysis was run to estimate the parameters with the biggest impact on the ICER (Figure 5).
- The biggest impact on ICER and DSA: in-hospital mortality and response rate for patients on the CMS+IMI treatment arm.

Probabilistic Sensitivity Analysis

Imi/Rel had a 94.5% probability of being cost effective at a threshold of 52,770 € per QALY (3x Greece GDP per capita).

Table 3:Infection-Related Deaths within 1 year

Technologies	A. During Initial hospitalization	B. Uncured (1 year)	C. 1 year total (A+B)
CMS+IMI	28.9%	1.0%	29.9%
lmi/Rel	14.3%	0.6%	14.9%

• Table 2: Results of the model's base-case analysis

Technologie s	Total costs	Total LYs	Incremental costs	Incremental LYs	ICER per LYG
CMS+IMI	23,874 €	18.14			
Imi/Rel	24,690 €	22.00	813 €	3.86	211 €

• Figure 3: Deterministic Sensitivity Analysis Results

CONCLUSIONS

- The results of our analysis indicate that IMI/REL is a cost-effective treatment option for patients with (cIAI), (cUTI) including pielonephritis, and (HABP/VABP) caused by carbapenem resistant (CR) Gram-negative (GN) bacteria in Greece.
- IMI/REL could help Greece to address the high burden of carbapenem-resistant bacteria, given that it has the highest incidence in CR-resistant bacteria in the EU and EEA countries ³.

REFERENCES

- WHO, available at: Antibiotic resistance (who.int), 2020;
- Karakonstantis, et. al., Journal of Infection (Inf.) and Public Health 2019;
- Cassini, et al., Lancet Inf. Diseases, 2019;
- Polemis., et. al., Life (Basel) ,2021; Motsch J, Clin Infect Dis. 2020;
- Eurostat, Available at: Statistics | Eurostat (europa.eu) ,2022;