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The Opportunity of Big Data in Numbers
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The Opportunity of Big Data in Numbers
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electronic health records

US$ 35 billion

global market (2025) for 
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Listing new treatments: ALK+ NSCLC 
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Listing new treatments: ALK+ NSCLC 

Chazan, Franchini, Alexander, John, Shah, IJzerman, Solomon; Lung Cancer (2022)

n=700 ALK+ 
NSCLC
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Population Health Economic Impact
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FDA approvals NSCLC (May, 2020)
• Ramucirumab/erlotinib
• Nivolumab/Ipilimumab
• Brigatinib
• Atezolizumab
• Capmatinib
• Selpercatinib
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Method – Defining treatment lines
• Using a curated registry, building a treatment pathway: rules based

• Surgery +
• Radiotherapy
• Chemotherapy

à Prior-After 3 months

Surgery + (neo)adj 
Tx

• Radiotherapy (curative)
• Chemotherapy

à Within 3 months

Radiotherapy + 
chemo

• Any chemotherapy
• Followed by 
pemetrexed

à Within 3 months

Maintenance 
chemotherapy

• Cisplatin-based 
chemo

• Carboplatin-based 
chemo

à Within 3 months

Toxicity-related 
(1): swap from

• Biological agents
• Subset of agents

à Within 3 months

Toxicity-related 
(2): swap from
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Analysis of the whole episodes of care: data driven 

Molecular diagnostics Systemic therapy
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Cost analysis over entire care episodes

Sven Relyveld et al, Process model enhancement to establish the cost of entire episodes of colorectal cancer care using multi-centre linked data
Special Issue Mathematical Biosciences and Engineering, 2022 20
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Challenges with Data Linkage I (missing patients)
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Machine learning for extracting and linking data

Mapping treatment episodes in relatively “clean” clinical datasets
Purpose: The analysis of specific treatments (sequences) and correlation with survival
Issue: Rule-based using clinical expertise is labor intensive
Use ML: Process mining is used to identify unique sequences of events

Combining various (clinical, claims, administrative) datasets through linkage
Purpose: The analysis of whole episodes of care, to investigate disparities in access to

care and outcomes or health service utilisation across different settings
Issue: “Data gaps”, such as missing clinical information (stage, comorbidities) at 

population level
Use ML: ML methods can be used to infer clinical information from other data (e.g. 

pharmacy prescription data to infer toxicities)
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Poll Question
How reliable is population level research if we only have complete data for a 
fraction of the patients? E.g. can we reliably estimate cost of care delivery 
from a subset of patients using process mining or ML methods?
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Poll Question
If my dataset only has only 5% patients with complete clinical information 
(stage, comorbidities, ECOG, PROMs), there is insufficient statistical power to 
do any meaningful regression analyses

• Yes

• No
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Poll Question
Inferring stage information or estimating immunotherapy related toxicities 
from drug dispensing data using machine learning will never be accepted 
by clinicians

• Yes

• No
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Poll Question
We should not be using machine learning, instead we should solve data 
privacy and security issues to enable faster and better use of all existing data

• Yes

• No
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Machine Learning 
Extraction and 
RWD Generation 
at Scale

Corey M. Benedum, PhD, MPH
Flatiron Health
@DrCoreyBenedum
coreybenedum

Hold for figure



Corey Benedum is an employee of Flatiron Health, an independent 
subsidiary of Roche Group. He holds stock ownership in Roche. 

Disclaimers
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- Compare Treatment Effectiveness

The value of real-
world evidence

- Understand Treatment Effectiveness

- HTA decision making

- Identify disparity in care

- Measure safety and effectiveness of 
off-label treatments

And much more…

© Flatiron Health 
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Real-world evidence generation

RWD/E 
Database

Pathology Report

Radiology Report

Vitals

EHR

Unstructured Data 

Discharge Notes

Labs

© Flatiron Health 

Structured Data 

Demographics

Drug Orders

Physician Notes

Radiology Images

Data Outside EHR

Obituary Data

Social Security Death Index
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Several data elements critical 
for outcomes research are 
stored in unstructured data 
sources. 

Abstracting this information is 
a costly and resource 
intensive task.

Challenge: 
Critical data elements come from unstructured data

© Flatiron Health 
39



The promise of clinical 
ML for RWE

Real-world data and analytics 

organizations are looking to 

machine learning (ML) to 

efficiently extract data found in 

unstructured data at scale. 

© Flatiron Health 
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Keys to accurate 
information extraction 
with ML

1. High quality labels that are designed 
with clinical expertise and are 
consistently / accurately collected.

2. Large volume of labels obtained 
from trained clinical experts 
performing chart review (abstraction)

© Flatiron Health 
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Approach for extracting metastatic diagnosis date with ML

1. Abstractors label some of the patients

Patient data Metastatic 
diagnosis date

1 Jun 2021

No 
diagnosis

17 Mar 2016

© Flatiron Health 
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Approach for extracting metastatic diagnosis date with ML

Machine 
learning 

algorithm

1. Abstractors label some of the patients

2. We train a model 
on this labeled dataPatient data Metastatic 

diagnosis date

1 Jun 2021

No 
diagnosis

17 Mar 2016
Potential ML algorithms
1. Deep learning architectures 
2. Logistic regression
3. RandomForest

The model learns the 
language patterns 
associated with 
metastatic disease 

© Flatiron Health 
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Machine 
learning 

algorithm

Unlabeled 
patient data

3. We use a trained 
model to predict if and 
when the patient was 
diagnosed with 
metastatic disease

Is Metastatic:
TRUE
Metastatic 
Diagnosis Date:
15 Feb 2017

Approach for extracting metastatic diagnosis date with ML

1. Abstractors label some of the patients

2. We train a model 
on this labeled dataPatient data Metastatic 

diagnosis date

1 Jun 2021

No 
diagnosis

17 Mar 2016
Potential ML algorithms
1. Deep learning architectures 
2. Logistic regression
3. RandomForest

© Flatiron Health 
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Machine 
learning 

algorithm

Unlabeled 
patient data

3. We use a trained 
model to predict if and 
when the patient was 
diagnosed with 
metastatic disease
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TRUE
Metastatic 
Diagnosis Date:
15 Feb 2017

Approach for extracting metastatic diagnosis date with ML

1. Abstractors label some of the patients

2. We train a model 
on this labeled dataPatient data Metastatic 

diagnosis date

1 Jun 2021

No 
diagnosis

17 Mar 2016
Potential ML algorithms
1. Deep learning architectures 
2. Logistic regression
3. RandomForest

DETAILED LOOK INSIDE 2

© Flatiron Health 
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Overview:
Building the model

- Metastatic
- Mets
- Recurrent
- Stage
- relapsed

...

!
"
#
$

Model Building Process:

1. construct list of 
relevant search terms

2. filter to sentences with 
informative terms.

3. assign dates to sentences

4. create model input from 
sentence-date pairs

© Flatiron Health 
46



Clinic note: 20 Mar 2018

Model Building Process: Name: John Doe
DOB: 6/15/1952
History of Present Illness:
65 year old male w h/o  Stage 4 
lung adeno ca

(EGFR neg, ALK neg, ROS1 neg, 
BRAF neg, PDL1 high expression 
(60%) > cisplatin/alimta/pembro > 
05/22/2017 

Completed XRT L iliac bone, 
01/26/2018 Completed XRT Anterior 
Subcutaneous Chest Nodule
...

- Metastatic
- Mets
- Recurrent
- Stage
- relapsed

...

1. construct list of relevant 
search terms

2. filter to sentences with 
informative terms.

3. assign dates to sentences

4. create model input from 
sentence-date pairs

Overview:
Building the model

© Flatiron Health 
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“...biopsy shows 
metastases to liver... ”

“...patient with 
metastatic lung... ”

“...metastatic since 
10 May 2017... ”

20 Feb 2017 15 Jun 2017 13 Mar 2018

Model Building Process:

1. construct list of relevant 
search terms

2. filter to sentences with 
informative terms.

3. assign dates to sentences

4. create model input from 
sentence-date pairs

Overview:
Building the model

© Flatiron Health 
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“...biopsy shows 
metastases to liver... ”

“...patient with 
metastatic lung... ”

“...metastatic since 
10 May 2017... ”

20 Feb 2017 15 Jun 2017 13 Mar 2018

Reassign the sentence to have 
a timestamp matching the 

date referred to in the 
sentence

Model Building Process:

1. construct list of relevant 
search terms

2. filter to sentences with 
informative terms.

3. assign dates to sentences

4. create model input from 
sentence-date pairs

Overview:
Building the model

© Flatiron Health 
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“...biopsy shows 
metastases
to liver... ”

20 Feb 2017

“...metastatic since 
10, May 2017... ”

10 May 2017

“...patient with 
metastatic lung... ”

15 Jun 2017

Machine 
learning 

algorithm

Model Building Process:

1. construct list of relevant 
search terms

2. filter to sentences with 
informative terms.

3. assign dates to sentences

4. create model input from 
sentence-date pairs

Overview:
Building the model

© Flatiron Health 
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Models must be 
generalizable to the 
target population

Potential Negative Outcome 

Model is not generalizable leading to low 
performance and bias

Solutions

● Clearly define the target population
● Understand how training data are 

derived from this population to ensure 
representativeness

Placeholder for figure 

© Flatiron Health 
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Models must be fair

Potential Negative Outcome

Model performs poorly among certain 
subpopulations resulting in inadvertent 
exclusion of historically marginalized 
populations

Solutions

● Training data should balance diversity 
and representativeness of target 
population

● Model training and testing data should 
include enough examples from select 
subgroups

Placeholder for fairness figure 

© Flatiron Health 
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Models must be 
holistically and 
transparently evaluated  
Potential Negative Outcome

Model errors may lead to biased study 
results and incorrect decisions / analytic 
conclusions.

Solutions

● Evaluate ML models and ML 
generated RWD

● Quantitative bias analyses and other 
bias correction methods

© Flatiron Health 

Presentation of Flatiron Health’s replication of analytic use cases: 
Nov 8, 15:00: Sondhi et al. Can ML-Extracted Variables Reproduce Real World Comparative Effectiveness Results From Expert-Abstracted Data? A Case Study in 
Metastatic Non-Small Cell Lung Cancer Treatment (Poster RWD112)
Nov 9, 10:00: Benedum et al. Machine Learning-Accelerated Outcomes Research: A Real-World Case Study of Biomarker-Associated Overall Survival in Oncology 
(Session 314: Applications of Machine Learning and Artificial Intelligence in Real-World Studies)

ML-
Extracted 

RWD

Overall 
Performance 
Assessment

Stratified 
Performance 
Assessment

Replication 
of Analytic 
Use Cases 

Quantitative 
Error 

Analysis
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Poll Question

What would be the main barrier to adoption if you 
had access to ML-extracted data for HEOR? 
1. Concerns of data quality
2. Explainability / interpretability of models
3. Lack of formal regulatory guidance 
4. Other barriers
5. I am already an ML-extracted data user
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Thank you

Additional Collaborators: Blythe Adamson, Aaron B. 
Cohen, Melissa Estevez, Erin Fidyk, Sheila Nemeth

Corey Benedum
Quantitative Scientist
Machine Learning
Flatiron Health
@DrCoreyBenedum
coreybenedum

55



Natalia Kunst, PhD
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Yale University Schools of Public Health and Medicine, USA

The Center for Healthcare Research in Pediatrics (CHeRP), Harvard Medical School, USA

Natalia.kunst@medisin.uio.no
@NataliaKunst

IMPROVING MEDICAL DECISION MAKING: 
EVIDENCE AND UNCERTAINTY 

CONSIDERATIONS



MEDICAL DECISION MAKING

Medical decision making

Li M and Chapman GB (2020). Medical Decision Making. In The Wiley 
Encyclopedia of Health Psychology (eds K Sweeny, ML Robbins and LM Cohen). 57



MEDICAL DECISION MAKING

Medical decision making
Trade-offs

Li M and Chapman GB (2020). Medical Decision Making. In The Wiley 
Encyclopedia of Health Psychology (eds K Sweeny, ML Robbins and LM Cohen). 58



MEDICAL DECISION MAKING

Medical decision making
Trade-offs

Prognoses 
about future 

outcomes

Li M and Chapman GB (2020). Medical Decision Making. In The Wiley 
Encyclopedia of Health Psychology (eds K Sweeny, ML Robbins and LM Cohen). 59



MEDICAL DECISION MAKING

Medical decision making
Trade-offs Imperfect 

evidence

Prognoses 
about future 

outcomes

Li M and Chapman GB (2020). Medical Decision Making. In The Wiley 
Encyclopedia of Health Psychology (eds K Sweeny, ML Robbins and LM Cohen). 60



MEDICAL DECISION MAKING

Medical decision making

Uncertainty

Trade-offs Imperfect 
evidence

Prognoses 
about future 

outcomes

Li M and Chapman GB (2020). Medical Decision Making. In The Wiley 
Encyclopedia of Health Psychology (eds K Sweeny, ML Robbins and LM Cohen). 61



MEDICAL DECISION MAKING

Medical decision making

Risk Uncertainty

Trade-offs Imperfect 
evidence

Prognoses 
about future 

outcomes

Li M and Chapman GB (2020). Medical Decision Making. In The Wiley 
Encyclopedia of Health Psychology (eds K Sweeny, ML Robbins and LM Cohen). 62



ITERATIVE DECISION-MAKING FRAMEWORK IN HEALTH AND MEDICINE 
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VALUE OF INFORMATION

▪Uncertainty in every decision
▪ There’s a probability of making the wrong decision
▪What are the consequences of making the wrong decision?
▪ Costs?
▪ Forgone benefits?

▪Size of population being affected by the decision
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VALUE OF INFORMATION

▪How likely we are making the wrong decision and how bad it is to make 
the wrong decision
▪ Uncertainty regarding our model parameters driven by the limited amount of information

▪Cost of uncertainty (i.e., expected loss based on current information)
▪ There is an opportunity cost in the sense that we expect to have made a better decision had we had 

additional information/greater certainty

▪ Expected benefit of research
▪ How valuable it is to collect additional evidence that enables us to reduce our uncertainty about the 

parameters
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PARAMETER UNCERTAINTY AND POTENTIAL BIAS

▪Populating the model inputs with appropriate and relevant evidence is necessary to 
ensure model credibility

▪Sometimes the existing evidence may be insufficient to inform some of the relevant 
model inputs, thereby reducing or inhibiting the model’s usefulness

▪As indicated by the ISPOR VOI Task Force, when the risk of bias or appropriate 
technique for data analysis is unclear, the existing guidelines to aid 
characterization of uncertainty about methodological choice should be followed. 
These include:

▪ Bilcke J. et al. Accounting for Methodological, Structural, and Parameter Uncertainty in Decision-Analytic Models: A 
Practical Guide. Med Decis Making. 2011; 31: 675-692

▪ Jackson C.H. et al. Structural and parameter uncertainty in Bayesian cost-effectiveness models. J R Stat Soc Ser C 
Appl Stat. 2010; 59: 233-253
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GATHERING NEW EVIDENCE TO POPULATE THE MODEL
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GATHERING NEW EVIDENCE TO POPULATE THE MODEL

Objective: To estimate of population-based annual recurrence rates of colorectal cancer 
considering two diagnosis periods: 1975-1984 and 1994-2003

Methods: Statistical multistate survival modeling techniques using data from the 
Surveillance, Epidemiology, and End Results (SEER) Program 

NED: No evidence of disease
Recur: Symptomatic distant recurrence
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GATHERING NEW EVIDENCE TO POPULATE THE MODEL

Results:

• The estimated population-based colorectal cancer recurrence rates were 
higher than the previously available trial-based estimates. 

• The 10-year cumulative risk from population-based data vs. from trial-based 
estimates was:
• Stage II colorectal cancer: 8.8-22.4% higher
• Stage III colorectal cancer: 3.9-18.4% higher

•Potential bias in the effectiveness and cost-effectiveness evaluation
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(FDA) REGULATORY 
DECISIONS

Accelerated approval decisions made 
with limited, preliminary data have:

▪High uncertainty, and

▪Significant downstream societal costs, if 
these decisions are made in error
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