EE217: Population Genomic Screening for Tier 1 Genomic Applications: A Cost-Effectiveness Analysis

Clara Marquina^{1,2}, Paul Lacaze¹, Jane Tiller¹, Adam Brotchie¹, Zanfina Ademi²

¹School of Public Health and Preventive Medicine, Monash University; ²Faculty of Pharmacy and Pharmaceutical Sciences, Monash University

BACKGROUND

- Tier 1 genomic applications are poorly ascertained by the healthcare system, but early detection and intervention could dramatically reduce morbidity and mortality¹.
- Three genetic conditions are included in Tier 1: Familial Hypercholesterolemia (*Apo E*, *PCSK9*,*LDLR*)¹, breast and ovarian cancer (*BRCA1* and *BCRA2*)² and Lynch Syndrome (colorectal cancer; *MLH1*, *MLH6*)².

Aim

To assess the impact and cost-effectiveness of offering population genomic screening to all young adults in Australia to detect heterozygous familial hypercholesterolemia (FH), hereditarian breast and ovarian cancer and hereditarian colorectal cancer.

METHODS

Figure 2A. Markov model for ApoE, PCSK9, LDLR (Familial Hypercholesterolemia)

Figure 2B. Markov model for BRCA1/2 screening (Breast cancer & Ovarian cancer)

Figure 2C. Markov model for MLH1/MLH2 screening (Colorectal cancer)

RESULTS

Model Outcomes	Standard of care	Population genomic screening	Difference
Non-fatal CHD cases	40,185	37,878	-2,307
Total cancer cases	26,678	15,980	-10,698
Total deaths	71,704	65,908	-5,796
YLL	1,581,626	1,654,255	72,629
QALYs	1,320,541	1,426,673	106,132
Genomic Screening costs		\$1,664,848,400	\$1,664,848,400
Healthcare costs	\$3,763,949,123	\$3,126,779,262	-\$637,169,861
Total costs	\$3,763,949,123	\$4,791,627,662	\$1,002,913,193
ICER (AU\$/YLL)			\$14,150
ICER (AU\$/QALY)			\$9,683

Table 1. Combined model outcomes. CHD, Coronary heart disease; YLL, Years of life lived; QALYs, Quality-adjusted life years; ICER, Incremental cost-effectiveness ratio

CONCLUSIONS

Based on our model, offering population genomic screening to all young adults could be cost-effective from a public healthcare system perspective in Australia, at testing costs that are feasible (AU\$250 per test).

Contact details

Clara Marquina, PhD
Monash University, Melbourne, Australia
clara.marquina@monash.edu
Twitter @claremarquina