

Mapping IWQOL-Lite onto EQ-5D-5L and SF-6Dv2 in Chinese overweight and obese population

Weihua Guo^{1,2}, Shitong Xie^{1,3*}, Xiaoning He^{1,2*}

1 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 2 Center for Social Science Survey and Data, Tianjin University, Tianjin, China 3 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada Corresponding author: Prof Xiaoning He (hexn@tju.edu.cn)

BACKGROUND

- ◆ Obesity is a common chronic disease, which has a continuously increasing trend worldwide [1,2].
- ◆ In order to measure HRQoL and utility for overweight and obese people, some kinds of instruments are available.
 - ✓ EQ-5D and SF-6D are the most widely used generic preferencebased instruments in worldwide.
 - ✓ However, generic preference-based instruments are insensitive to some dimensions which can reflect some characters of overweight and obesity [3].
- ◆ Some disease specific non-preference-based instruments in overweight and obesity are always used to measure HRQoL^[4,5].
 - ✓ However, these instruments are time-consuming and cannot use to calculate utility.
- Mapping is a common solution to link disease-specific instrument scores and generic preference-based values [6].
 - ✓ Mapping in Chinese overweight and obese population is lacking.

OBJECTIVE

◆ The aim of the present study is using direct method to develop a mapping algorithm from IWQOL-Lite onto EQ-5D-5L and SF-6Dv2 utility values in Chinese overweight and obese people.

METHODS

Sample and Data

- ◆ Sample
 - Chinese overweight and obese people
 - provinces in China according to the four characteristics including gender, age, BMI and regions which was reported in the latest published literatures (N=1000).
- Collection methods
 - ✓ online survey from December 2021 to February 2022.

Instruments

- **♦ IWQOL-Lite**
 - √ 31 items refer to 5 dimensions, 5 levels rang from 5 "always true" to 1 "never true".
 - ✓ A total score and scores on 5 dimensions can be calculated ranging from 0 to 100, where 100 represents the best quality of life and 0 represents the worst.
- **♦** EQ-5D-5L
 - ✓ 5 dimensions of health and characterized by 5 levels.
 - ✓ A Chinese value set has a theoretical range of scores from -0.391 (55555) to 1 (11111).
- ◆ SF-6Dv2
 - ✓ 6 dimension of health with 4-6 levels.
 - ✓ A Chinese value set has a theoretical range of scores from -0.277 (555655) to 1(111111).

Data Analysis

- ◆ Split and Estimate
 - ✓ The sample was randomly split into 4:1 as development (N=800) and external validation samples (N=200).
 - ✓ Spearman's rank correlation coefficients between IWQOL-Lite and EQ-5D-5L/SF-6Dv2 in dimension scores and the total scores was calculated to test conceptual overlap.
- Model and Approach

$H = R + x + \alpha$	U is the utility value of FO 5D 51 /SE 6Dv2		
$U = \beta_i * x_i + \alpha$	U is the utility value of EQ-5D-5L/SF-6Dv2 x_i is the total score of IWQOL-Lite instrument		
$U = \beta_1 * x_i + \beta_2 * x_i^2 + \alpha$	x_i^2 represents the square term of IWQOL-Lite total score.		
$U = \beta_1 * x_i + \beta_2 * x_i^2 + \beta_3 * x_i^3 + \alpha$	x_i^3 represents the cube term of IWQOL-Lite total score.		
$U = \beta_1 * x_1 + \cdots + \beta_5 * x_5 + \alpha$	x_n represents IWQOL-Lite 5 dimensions score.		
Model 3 with backward regression and deleting the illogical one			
$U = \sum_{k}^{n} \beta_k * x_k + \alpha(k = 31)$	x_k represents IWQOL-Lite 5 dimensions score.		
Model 5 with backward regression and deleting the illogical one			
$U = \sum_{m}^{n} \beta_{m} * x_{m} + \alpha(m = 124)$	x_m represents IWQOL-Lite 5 dimensions score.		
Model 7 with backward regression and deleting the illogical one			
	$U = eta_1 * x_i + eta_2 * x_i^2 + eta_3 * x_i^3 + lpha$ $U = eta_1 * x_1 + \dots + eta_5 * x_5 + lpha$ Model 3 with backward regress $U = \sum_{k=0}^{n} eta_k * x_k + lpha(k = 31)$ Model 5 with backward regress $U = \sum_{m=0}^{n} eta_m * x_m + lpha(m = 124)$		

- ✓ After determined 1-2 better models, five appropriate statistical methods were adopted for direct mapping.
 - > OLS, Tobit, CLAD, GLM, PTM.
- ✓ Some additional basic characters were included to check whether they were suitable according to the p value and statistical criteria
 - Gender, age and BMI.
- Measure and Analysis
 - ✓ MAE, RMSE, AIC, BIC, the number and proportion of AE>0.05 and AE>0.1.
 - ✓ Scatter plot, bar chart and Bland-Altman Plot.
- ◆ External validation
- ✓ Use the remaining 20% of the total sample (N=200).

RESULTS

- ◆ After excluded 171 participants who quit the interview voluntarily, the study included 1,000 participants totally (Table 2).
- ◆ The results of Spearman's correlation coefficients shown that all five dimensions of IWQOL-Lite had a strong correlation with utility getting from EQ-5D-5L and SF-6Dv2.
- ◆ As for regress models, using IWQOL-Lite total score(model 2) or 5 dimensions scores(model 3) as the independent variable shown better results (Table 3 and Figure 1-4).

Basic characteristics	Quota (n=1000)		Overall (n=1000)		Development (n=800)		Validation (n=200)	
	BMI							
overweight	677	67.7%	677*	67.7%	538 [‡]	67.3%	139	69.5%
obesity	323	32.3%	323*	32.3%	262 [‡]	32.8%	61	30.5%
Gender								
female	520	52.0%	520*	52.0%	410 [‡]	51.3%	110	55.0%
male	480	48.0%	480*	48.0%	390 [‡]	48.8%	90	45.0%
Age								
18-34	174	17.4%	174^{*}	17.4%	147 [‡]	18.4%	27	13.5%
35-44	162	16.2%	162*	16.2%	126 [‡]	15.8%	36	18.0%
45-54	192	19.2%	192*	19.2%	147 [‡]	18.4%	45	22.5%
55-64	179	17.9%	179*	17.9%	140 [‡]	17.5%	39	19.5%
≥65	293	29.3%	293*	29.3%	240 [‡]	30.0%	53	26.5%
Regions								
northeast	173	17.3%	173*	17.3%	139 [‡]	17.4%	34	17.0%
eastern China	134	13.4%	134*	13.4%	103 [‡]	12.9%	31	15.5%
northern China	185	18.5%	185*	18.5%	148 [‡]	18.5%	37	18.5%
central China	136	13.6%	136*	13.6%	110 [‡]	13.8%	26	13.0%
southern China	96	9.6%	96*	9.6%	80 [‡]	10.0%	16	8.0%
southwest	131	13.1%	131*	13.1%	105 [‡]	13.1%	26	13.0%
northwest	145	14.5%	145*	14.5%	115 [‡]	14.4%	30	15.0%

—indicated there was no relevant statistics reported; * indicated the difference between overall and development samples was insignificantly (P>0.05); \ddagger indicated the difference between development and validation samples was insignificantly (P>0.05).

Table 3 Regress models of mapping IWQOL-Lite to EQ-5D-5L and SF-6Dv2 EQ-5D-5L 224(28.0%) 116(14.5%) model 2. 195(24.4%) 86(10.8%) 83(10.4%) 111(13.9%) 111(13.9%) 109(13.6%) 112(14.0%) 63(7.9%) 168(21.0%) 72(9.0%) SF-6Dv2 119(14.9%) 132(16.5%) 114(14.3%) model 2.2 257(32.1%) 114(14.3%) model 3 119(14.9%) model 4 model 5 110(13.8%) model 6 124(15.5%) model 7 80(10.0%) 234(29.3%) —indicated there was no relevant statistics reported.

- ◆ As a whole, the result for model 2 was better than the result for model 3 in regress methods (Table 4).
- ◆ CLAD method had a best results for both EQ-5D-5Land SF-6Dv2 (Figure 4 and 5).
- ◆ The addition basic characters of age, gender and BMI had little impact on the goodness of fit and all these basic characters shown insignificant coefficients (Figure 7).
- ◆ The results of external validation were consistently with the development group.
 - ✓ Model 2.1 with CLAD methods was the best for EQ-5D-5L;
 - ✓ Model 2.2 with CLAD was the best for SF-6Dv2.

Figure 5 EQ-5D-5L Bland-Altman Plot of preferable regress methods

Figure 6 SF-6Dv2 Bland-Altman Plot of preferable regress methods

-					
CLAD	Coef.	P>t			
EQ-5D-5L Model 2.1					
age	1.7E-18	1.000			
gender	5.8E-18	1.000			
BMI	-6.2E-04	0.634			
SF-6Dv2 Model 2.2					
age	-0.0004	0.194			
gender	0.0021	0.825			
BMI	-0.0002	0.906			
Figure 7 Coefficients of additional basic characters					

CONCLUSIONS

The CLAD with IWQOL-Lite total score and the squared one for EQ-5D-5L and the CLAD with IWQOL-Lite total score, the squared one and the cubic one for SF-6Dv2 were the best mapping algorithms in Chinese overweight and obesity people in our study.

 $U_{EO-5D-5L} = 0.0178 * x_i - 0.0001 * x_i^2 - 0.0640$

 $U_{SF-6Dv2} = 0.0270 * x_i - 0.0004 * x_i^2 + 0.000002 * x_i^3 - 0.0593$

References:

- 1. NCD RISK FACTOR COLLABORATION (NCD-RISC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416
- population-based measurement studies in 128-9 million children, adolescents, and adults [J]. Lancet, 2017, 390(10113): 2627-42. 2. Macioch T, Jarosz A, Golicki D, et al. The impact of obesity on quality of life in polish population [J]. Value in Health, 2009, 12 (7): A385.
- 3. Doble B, Lorgelly P. Mapping the EORTC QLQ-C30 onto the EQ-5D-3L: assessing the external validity of existing mapping algorithms. Qual Life Res. 2016 Apr;25(4):891-911. doi:
- 10.1007/s11136-015-1116-2. Epub 2015 Sep 21. PMID: 26391884.
- (SOReg). Eur J Health Econ. 2022 May 20. 5. Brazier JE, Kolotkin RL, Crosby RD, Williams GR. Estimating a preference-based single index for the Impact of Weight on Quality of Life-Lite (IWQOL-Lite) instrument from the SF-6D.

4. Sun S, Stenberg E, Cao Y, Lindholm L, Salén KG, Franklin KA, Luo N. Mapping the obesity problems scale to the SF-6D: results based on the Scandinavian Obesity Surgery Registry

Value Health. 2004 Jul-Aug;7(4):490-8. 6. Wailoo A J, Hernandez-Alava M, Manca A, et al. Mapping to Estimate Health-State Utility from Non-Preference-Based Outcome Measures: An ISPOR Good Practices for Outcomes

Research Task Force Report[J]. Value in Health, 2017, 20(1):18-27. **Funding:** This study was funded by Novo Nordisk, Inc.