Living Network Meta-Analysis for Up-to-Date Comparative Effectiveness: A Case Study in Multiple Myeloma Maintenance

Egunsola O, Verhoek A, Liu R*, Thorlund K, Heeg B, Kwon C, Forsythe A ¹Cytel Inc., Waltham, MA, USA

HTA145

INTRODUCTION

Background

- The volume and speed of publications reporting new relevant evidence can lead to Health Technology Assessment (HTA) decisions being informed by outof-date evidence.
- Therefore, payers are beginning to embrace the concept of living HTA, which ensures pre-defined commitment to regular updates. Network metaanalyses (NMAs) are integral to HTAs.
- While the traditional NMA methods for synthesizing comparative clinical evidence are time-consuming, requiring extensive data preparation and knowledge of statistical programming, a living NMA tool presents an opportunity to recreate existing NMAs, monitor new evidence, and quickly update analyses within a few minutes.
- In 2021, 33 abstracts on interventions for multiple myeloma maintenance were presented at major oncology congresses. This reflects the rapidly shifting evidence landscape, which requires a nimble analytic approach that is easier and quicker to update.

Objective

 In this study, we replicated and updated a previously published NMA using LiveNMA™, a new interactive NMA tool connected with LiveSLR®, an interactive, up-to-date SLR library.

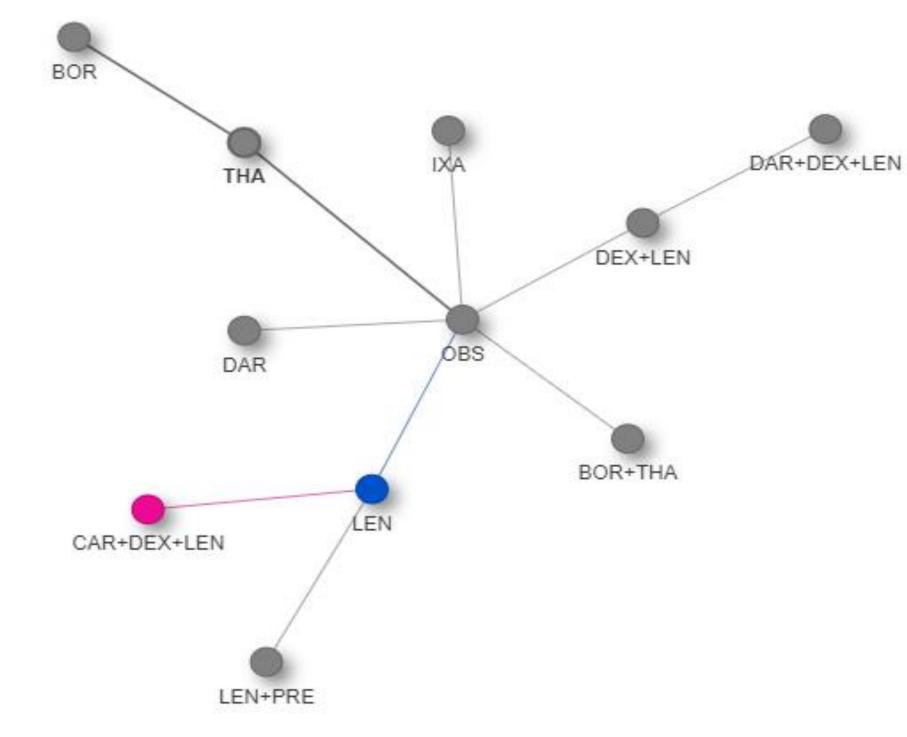
Methods

- Leveraging an existing living systematic literature review (LiveSLR) platform, which is regularly updated to capture newly published articles and abstracts, we developed an integrated living NMA tool (LiveNMA).
- LiveNMA is an R-based tool that performs Bayesian NMAs for overall survival (OS) and progression-free survival (PFS) using studies identified by LiveSLR.
- To validate this tool, a previously published NMA of PFS among multiple myeloma maintenance regimens by Luchinin et al. [1] was replicated.
- Luchinin et al. conducted their NMA using the frequentist approach, with R software version 3.4.2 (netmeta package).
- The network consisted of 13 trials (Table 1).[2-14]
- Included trials involved 10 treatment regimens.
- We updated the analysis using the LiveNMA tool with data from a recently published study (Dytfeld, D et al., 2022[15]) identified through LiveSLR, comparing carfilzomib-lenalidomide-dexamethasone with lenalidomide.

Table 1. Included studies

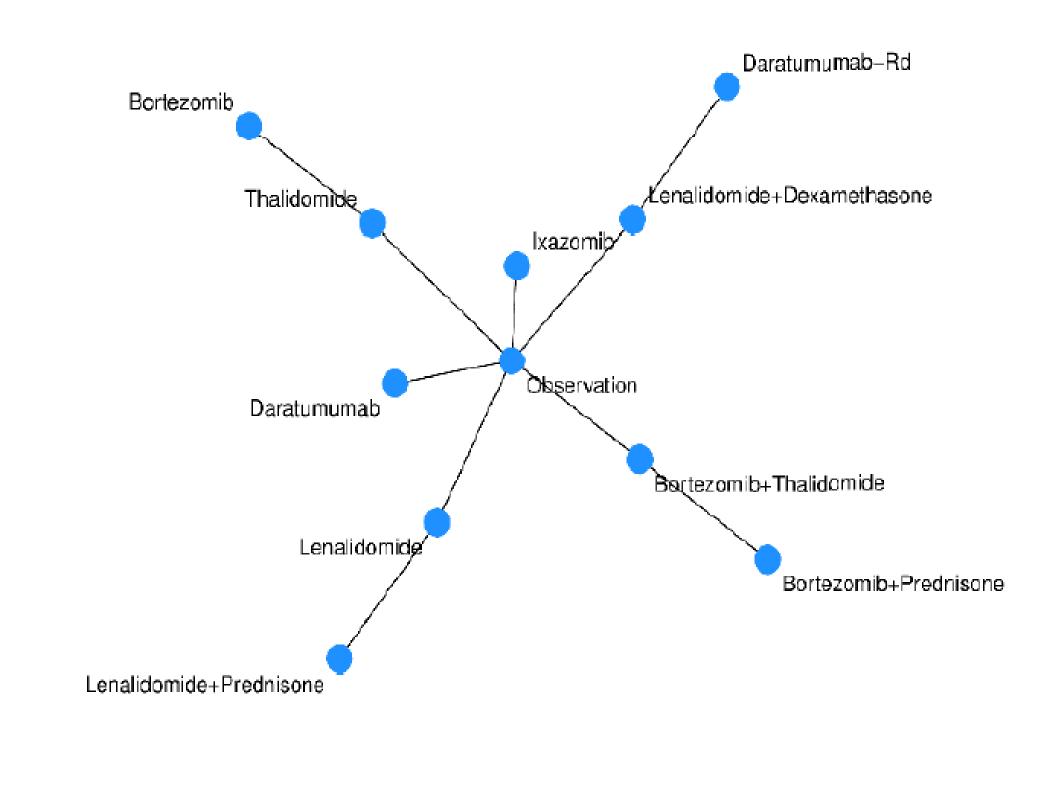
* All studies are P3 RCTs.

** Red text indicates newly added study.


Reference	Trial Identifier	Interventions
Mateos et al. 2014 ²	GEM2005 trial	Bortezomib-Thalidomide vs
	(NCT00443235)	Bortezomib-Melphalan
McCarthy et al, 2012 ³	CALGB/Alliance	Lenalidomide vs Observation
, 5. a., 2	(NCT00114101)	
Attal et al, 2012 ⁴	IFM 2005-02	Lenalidomide vs Observation
7 111011 01 011, =0.1=	(NCT00430365)	
Palumbo et al, 2014 ⁵	NCT00551928	Lenalidomide vs Observation
Gay et al, 2015 ⁶	RV-MM-EMN-441	Lenalidomide + Prednisone vs
	(NCT01091831)	Lenalidomide
Morgan et al, 2013 ⁷	MRC-Myeloma IX	Thalidomide vs Observation
Sonneveld et al,	HOVON-65/GMMG-HD4	Bortezomib vs Thalidomide
20128	(ISRCTN64455289)	
Palumbo et al, 2014 ⁹	NCT01063180	Bortezomib + Thalidomide vs
		Observation
Mateos et al, 2020 ¹⁰	ALCYONE	Daratumumab vs Observation
Bahlis et al, 2019 ¹¹	MAIA	Daratumumab + Lenalidomide +
		Dexamethasone vs Lenalidomide +
		Dexamethasone
Graham et al, 2019 ¹²	Myeloma XI	Lenalidomide vs Observation
Benboubker et al,	NCT00551928	Lenalidomide + Dexamethasone vs
2014 ¹³		Observation
Dimopoulos et al.	TOURMALINE-MM3	Ixazomib vs Observation
2019 ¹⁴	(NCT02181415)	
Dytfeld et al, 2022 ¹⁵	ATLAS (NCT02659293)	Carfilzomib + Lenalidomide +
		Dexamethasone vs Lenalidomide

RESULTS

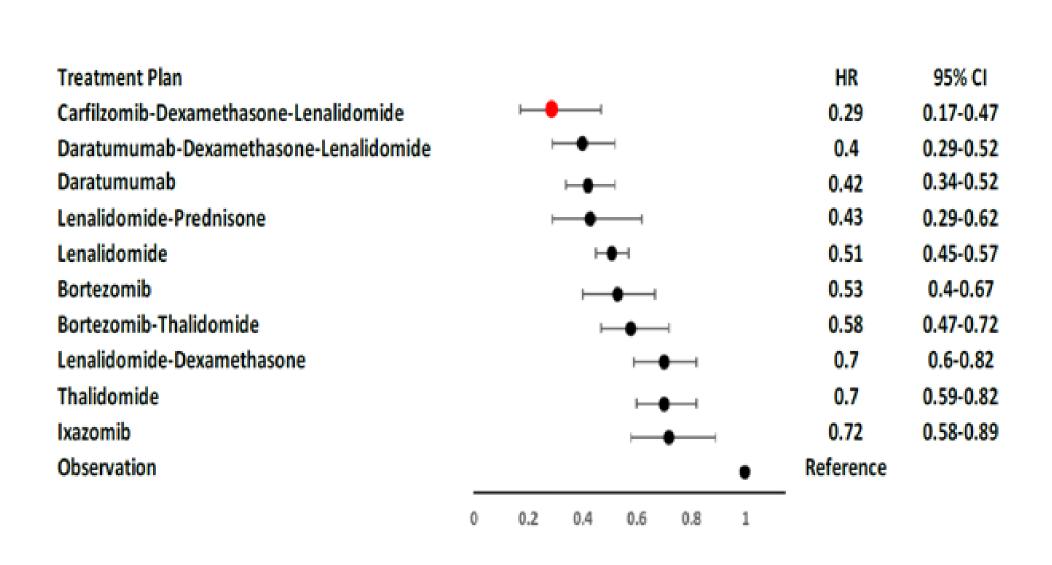
- By combining the LiveSLR platform with the LiveNMA software tool, we replicated the reference network diagram (Figure 1A) and treatment hierarchy (Figure 2A) within minutes.
- Maintenance PFS data were not published in the GEM2005 trial[2].
- Both networks were structurally similar and treatment ranking was comparable.


Figure 1. Network Diagram

A. LiveNMA replicate

- Indirect comparisons between daratumumablenalidomide-dexamethasone, lenalidomideprednisolone and bortezomib, respectively, versus observation were successfully implemented.
- The NMA update was easy and rapid. It showed carfilzomib-lenalidomide-dexamethasone to have the best improvement in PFS compared with the other regimens in the model.

B. Original network diagram (Luchinin et al¹)



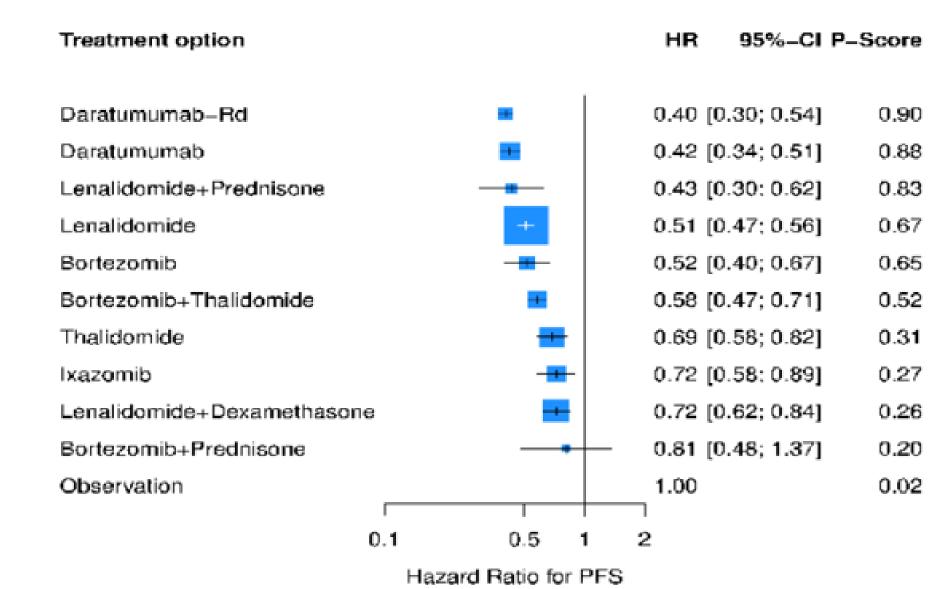

Abbreviations: BOR, Bortezomib; CAR, Carfilzomib; DAR, Daratumumab; DEX, Dexamethasone; IXA, Ixazomib; LEN, Lenalidomide; OBS, Observation; PRE, Prednisone; THA, **Thalidomide**

Figure 2: Forest plots of PFS Hazard Ratios

A. Replicated Forest Plot

B. Original Forest plot (Luchinin et al.)

Limitations

New Intervention

- The results should be interpreted with caution because the tool is not currently equipped to assess heterogeneity in baseline characteristics and trial designs.
- While treatment comparison against a reference intervention is possible, comparison between treatments in a matrix (pairwise) format cannot yet be implemented.

CONCLUSIONS

- This study demonstrated the utility of an interactive LiveNMA tool, which replicated and updated an existing NMA analysis in just a few minutes.
- This easy and reliable tool can help decision makers stay current with the comparative effectiveness of new and existing treatments.

REFERENCES

- Luchinin. S et al. Efficacy of maintenance and continuous therapy in patients with untreated multiple myeloma: independent network meta-analysis. EHA. 2020. EP964
- Mateos, MV et a. Blood. 2014. 124(12) 1887-93 doi:10.1182/blood-2014-05-573733
- McCarthy, PL et al. Engl J Med. 2012 May 10;366(19):1770-81. doi: 10.1056/NEJMoa1114083. Attal, M et al. N Engl J Med 2012; 366:1782-1791 DOI: 10.1056/NEJMoa1114138
- Palumbo A. et al. N Engl J Med. 2014 Sep 4;371(10):895-905. doi: 10.1056/NEJMoa1402888. Gay, F et al. 2015, 16(16):1617-1629 DOI: 10.1016/s1470-2045(15)00389-7
- Morgan, CJ et al. Clin Cancer Res (2013) 19 (21): 6030-6038. doi.org/10.1158/1078-0432.CCR-12-3211
- Sonneveld, P J Clin Oncol. 2012 Aug 20;30(24):2946-55. doi: 10.1200/JCO.2011.39.6820 Palumbo, A et aql. J Clin Oncol. 2014 Mar 1;32(7):634-40. doi: 10.1200/JCO.2013.52.0023.
- 10. Mateos, M.et al. Lancet. 2020 Jan 11;395(10218):132-141. doi: 10.1016/S0140-6736(19)32956-3.
- 11. Bahlis, N. et al. Blood. 2019. Volume 134 (suppl 1): 1875 doi.org/10.1182/blood-2019-123426 12. Graham, J. et al. Blood (2019) 134 (Supplement_1): 1910.doi.org/10.1182/blood-2019-126160
- 13. Benboubker, L et al. N Engl J Med. 2014 Sep 4;371(10):906-17. doi: 10.1056/NEJMoa1402551. 14. Dimopoulos MA et al. Lancet, 2019. 393(10168):253-264. doi: 10.1016/S0140-6736(18)33003-4. Epub 2018 Dec 10.
- 15. Dytfeld, D et al. J Clin Oncol, 2022. 40 (suppl 16; abstr 8001) 10.1200/JCO.2022.40.16_suppl.8001

rozee.liu@cytel.com

Abbreviations: BOR, Bortezomib; CAR, Carfilzomib; DAR, Daratumumab; DEX, Dexamethasone; HTA, Health Technology Assessment; IXA, Ixazomib; LEN, Lenalidomide; NMA, Network meta-analysis; OBS, Observation; OS, overall survival; PFS, progression-free survival; PRE, Prednisone; THA, Thalidomide;