

DEVELOPMENT AND APPLICATION OF A NEW COST-UTILITY MODEL TO ASSESS THE COST-EFFECTIVENESS OF PALIVIZUMAB FOR THE PREVENTION OF SEVERE RESPIRATORY Syncytial Virus (RSV) INFECTION IN MODERATE-TO-LATE PRETERM INFANTS

X. Carbonell-Estrany¹, J. Fullarton², I. Keary², B. Rodgers-Gray², J-E. Tarride³, and B. Paes³¹Hospital Clinic, Barcelona, Spain; ²Viocom Medical Limited, Aldermaston, United Kingdom; ³McMaster University, Hamilton, Ontario, Canada

Introduction

- Palivizumab is the only licensed and effective therapy for preventing RSV hospitalisation (RSVH), but reported cost-effectiveness varies in moderate-to-late preterm (32–35 weeks' gestational age [wGA]) infants¹
- The 3-variable International Risk Scoring Tool (IRST) can guide prophylaxis for 32–35 wGA infants at greatest risk of RSVH and has the potential to improve the cost-effectiveness of palivizumab²
- 1:** Birth 3 months before to 2 months after RSV season start; **2:** Smokers in the household and/or smoking while pregnant; **3:** Siblings and/or day care

Objective

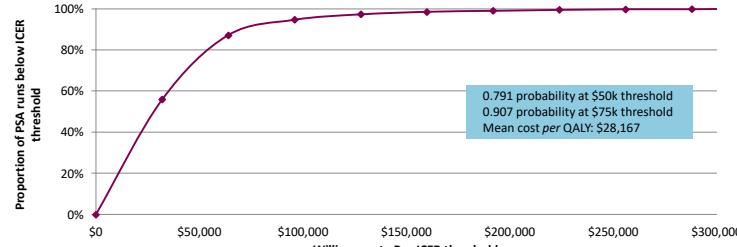
- To assess the cost-effectiveness of IRST-guided palivizumab *versus* no prophylaxis in Canadian moderate-to-late preterm infants using a new up-to-date cost-utility model

Conclusions

- This new economic analysis demonstrated palivizumab to be highly cost-effective *versus* no prophylaxis in moderate-and-high risk 32–35wGA infants in the Canadian healthcare context

Results and interpretation

Palivizumab was highly cost-effective (\$27,951/quality-adjusted life year [QALY]) in high- and moderate-risk infants (Table 1) and remained so when assessed only in moderate-risk infants (\$36,256)

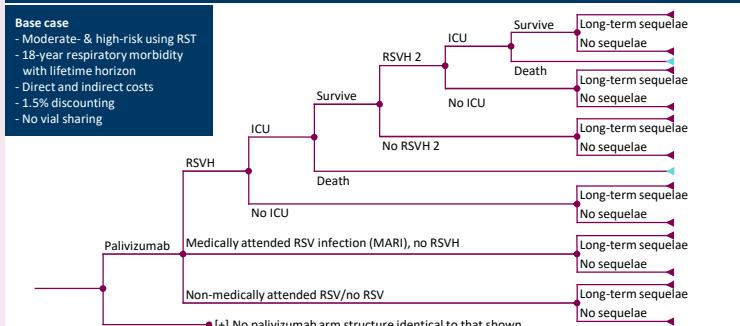

Table 1: Cost-effectiveness⁴ of palivizumab *vs* no prophylaxis using IRST

	High-risk	High- and moderate-risk	Moderate-risk
Cost difference	\$3,970	\$4,548	\$5,086
QALY difference	0.187	0.163	0.140
Cost per QALY	\$21,272	\$27,951	\$36,256

CANS: discounting at 1.5%; Canadian cost-effectiveness threshold typically stated as \$50k, though can be higher (>\$75k). IRST: International Risk Scoring Tool; QALY: quality-adjusted life year

- Probabilistic sensitivity analyses (10,000 iterations) resulted in incremental costs of \$28,167/QALY, with a 79.1% probability of palivizumab being cost-effective at a \$50,000 willingness-to-pay threshold (Figure 1)

Figure 1: Cost-effectiveness acceptability curve



ICER: incremental cost-effectiveness ratio; QALY: quality-adjusted life year; PSA: probabilistic sensitivity analysis

Methods

- A systematic review of previous economic evaluations of palivizumab in 32–35 wGA infants and expert input informed the structure, inputs and costs
- Infants assessed as moderate- and high-risk of RSVH by the IRST² (score ≥20/56) received palivizumab
- Prophylaxed/unreated infants followed a semi-Markov process having either an RSVH, emergency room/outpatient-medically attended RSV infection (MARI), or were uninfected/non-medically attended (Figure 3)

Figure 3: Decision tree and base case

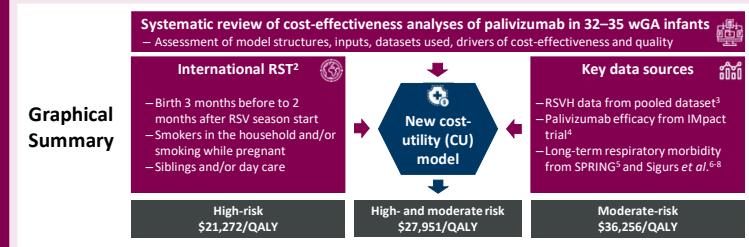
- The IMPact randomised trial⁴ was the primary source of palivizumab efficacy (82% reduction in RSVH), with birth data and hospital outcomes derived from the pooled dataset of 7 Northern Hemisphere studies used to develop the IRST³ (Table 2)

Table 2: Input parameters

Parameter	Palivizumab	No palivizumab
RSVH*		
- Overall rate (for efficacy)	1.8% ⁴	10.1% ⁴
- Intensive care unit (ICU) rate	17.9% ³	17.9% ³
- Ward length of stay, mean days	(In overall cost)	(In overall cost)
- ICU length of stay, mean days	6.8 ³	6.8 ³
- Utility in hospital	0.60 ^{9,10}	0.60 ^{9,10}
- Utility post discharge no sequelae	0.88 ¹¹	0.88 ¹¹
- Utility post discharge long-term sequelae	0.79 ¹²	0.79 ¹²
- Mortality (ICU patient only)	0.43% ^{13,14}	0.43% ^{13,14}
MARI		
- Rate outpatients only	2.48% ^{4,15,16}	13.91% ^{4,15,16}
- Rate outpatients & emergency department	0.42% ^{4,15,16}	2.38% ^{4,15,16}
- Rate emergency department only	0.05% ^{4,15,16}	0.29% ^{7,15,16}
- Utility	0.95 ¹¹	0.95 ¹¹
No RSVH/MARI		
- Utility no sequelae	0.95 ¹¹	0.95 ¹¹
- Utility long-term sequelae	0.79 ¹²	0.79 ¹²

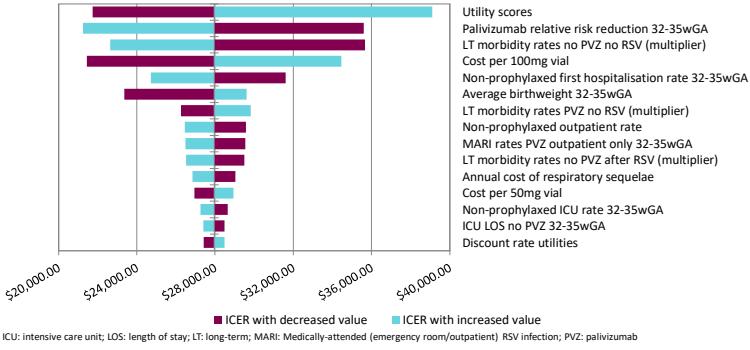
*First and subsequent RSVHs. ICU: intensive care unit; MARI: medically attended (emergency room/outpatient) RSV infection; RSVH: respiratory syncytial virus hospitalisation

Acknowledgments


Financial support for this study was provided by AstraZeneca. All authors contributed to the development of the publication and maintained control over the final content

Disclosures

XCE, JET and BP have received research funding and/or compensation as advisor/lecturer from AbbVie and AstraZeneca outside the scope of this study. BRG, IK and JF employers have received payment from AbbVie and AstraZeneca for work on various projects


References

- Mac S et al. Pediatrics 2019;143:e20184064. 2. Blanken MO et al. Pediatr Pulmonol 2018;53:605-12. 3. Lanari M et al. Epidemiol Infect 2020;148:e170. 4. Notaric G et al. Pediatric Health Med Ther 2014;5:43-8. 5. Carbonell-Estrany X et al. PLoS One 2015;10:e0125422. 6. Sigurs N et al. Am J Respir Crit Care Med 2000;161:1501-7. 7. Sigurs N et al. Am J Respir Crit Care Med 2005;171:137-41. 8. Sigurs N et al. Thorax 2010;65:1045-52. 9. Dreyer J et al. Health Technol Assess 2008;12:iii-69. 14. Wang D et al. Health Technol Assess 2011;15:15. Ambrosi CS et al. Pediatr Infect Dis J 2014;33:576-82. 16. Carbonell-Estrany X et al. Pediatrics 2010;125:e55-61. 17. Statistics Canada. Birth statistics for years 2015–2020. 18. Narayan et al. J Med Econ. 2020;23:1640-52. 19. Canadian Synagis List Price Dec 2020. 20. Papenburg J et al. Pediatr Infect Dis J 2020;39:694-9. 21. Ontario Ministry of Health. Physicians' Services - Schedule of Benefits. 2021. 22. Hospital spending: Focus on the emergency department. Ottawa, ON:CIHI;2020. 23. Imsila AS et al. BMC Pulm Med 2013;13:70. 24. Mitchell I et al. Can Respir J 2017;2017:4521302. 25. Canada Revenue Agency. 26. Statistics Canada. Salary. May 2022. 27. Statistics Canada. Employment. May 2022. 28. Blanken MO et al. N Engl J Med 2013;368:1791-9. 29. Simoes E et al. J Pediatr 2007;151:34-42. 30. Yoshihara S et al. Pediatrics 2013;132:811-8

- In deterministic sensitivity analyses (±20% on main variables) the model was most sensitive to utility scores, palivizumab efficacy, long-term morbidity rates, and palivizumab cost (Figure 2)

Figure 2: One-way sensitivity analysis ±20% for prophylaxed vs non-prophylaxed infants, 15 most sensitive variables

ICU: intensive care unit; LOS: length of stay; LT: long-term; MARI: medically-attended (emergency room/outpatient) RSV infection; PVZ: palivizumab

- Removing the 1.5% discounting of costs and utilities slightly improved cost-effectiveness
 - High- and moderate-risk, 18 years respiratory morbidity: \$24,724/QALY
- Vial sharing (5% wastage) considerably improved cost-effectiveness
 - High- and moderate-risk infants, 18 years respiratory morbidity: \$19,582/QALY
- Excluding indirect costs (\$27,294/QALY) had a limited impact

Limitations

- Key limitations of the model relate to the availability of gestational age specific data for utilities and long-term respiratory morbidity beyond 6 years

- Palivizumab costs were calculated from birth weights defined in Canadian birth statistics¹⁷ in combination with a growth algorithm¹⁸ and Canadian list prices (50mg: CAN\$752; 100mg: \$1,505)¹⁹ (Table 3)

- Healthcare costs were drawn from the RSV-Quebec study,²⁰ Healthcare Canada^{21,22} and an assessment of childhood asthma costs²³

- Indirect costs were drawn from Mitchell et al.²⁴ and national Canadian Statistics^{25,26}

Table 3: Direct and indirect costs			
	Direct	Indirect	
Parameter	Canadian dollars (CAD\$)	Parameter	CAD\$
Palivizumab*		Palivizumab administration	
- 50mg vial	752 ¹⁹	- Transport	76.13 ²⁵
- 100mg vial	1,505 ¹⁹	- Missed work	176.89 ²⁶
- Nurse administration	14.37 ²⁰		
Pre-admission healthcare contact	214.16 ²⁰	RSVH	
RSVH total stay (excl. ICU)	8352.87 ²⁰	- Missed work	1,213.31 ^{24,26}
ICU (per day)	5,747.00 ²⁰	- Childcare	116.04 ²⁴
		- Transport	124.86 ²⁴
		- Other out-of-pocket	341.81 ²⁴
MARI		MARI attendance	
- Outpatients appointment	First: 175.40; FU: 91.35 ²¹	- Transport	18.30 ²⁵
- Emergency department	336.56 ²²	- Missed work	42.52 ²⁶
Respiratory morbidity (p.a.)	1,116.45 ²³	Loss of earnings after death	2,178,497.24 ^{27,28}

FU: follow-up; ICU: intensive care unit; MARI: medically-attended RSV infection; p.a.: per annum; RSVH: respiratory syncytial virus hospitalisation. *Dose calculated using birth data from the source dataset for the IRST² with monthly weight gain applied using Narayan et al.¹⁸ algorithm. For moderate- and high-risk infants, the mean number of doses was 4.09

- Respiratory morbidity over 6–18 years across a lifetime horizon was assessed among RSVH, emergency room/outpatient attended RSV-infection (MARI), or uninfected/non-medically attended infants

- Rates of respiratory morbidity were drawn from the SPRING study² up to age 6 years and from Sigurs et al.^{6,8} thereafter; the impact of palivizumab was modelled based on data from three studies^{28–30}

Year(s)	Palivizumab	No Palivizumab
0-1	18.43%	5.38%
1-2	18.43%	41.43%
2-3	11.05%	5.80%
3-4	6.12%	4.15%
4-5	4.39%	2.73%
5-6	3.25%	2.53%
6-7	2.93%	2.29%
7-13	2.33%	1.47%
13-18	1.79%	1.17%

*Results were expressed as a cost per QALY (incremental cost-effectiveness ratio; ICER) *versus* no prophylaxis. RSVH: respiratory syncytial virus hospitalisation

- Scenario analyses included consideration of moderate- and high-risk groups individually, the exclusion of discounting, exclusion of societal costs, inclusion of vial sharing (5% wastage)

- Results are expressed as a cost per QALY (incremental cost-effectiveness ratio; ICER) *versus* no prophylaxis