Approaches to Control for Observable Selection Bias in Studies including Staggered Treatment Timing

Melissa Garrido,¹⁻² Jessica Lum,¹ Daniel Asfaw,¹⁻²
Steven Pizer¹⁻²

Boston VA Healthcare System and Boston University School of Public Health, Boston, MA, USA

Background:

- > Most current methods to account for treatment effect timing heterogeneity do not allow a treatment's effect to be isolated from effects of confounders associated with both treatment timing and outcome
- > Two-way fixed effects (TWFE) models produce biased or difficult to interpret estimates when effects vary with timing or duration
- > A potential solution involves using difference-in-differences with inverse probability of treatment weights (IPTW) to adjust for confounding across treatment cohorts, but IPTWs lead to biased estimates in cross-sectional evaluations comparing multiple treatments
- > We developed an alternative method, vector-based kernel weighting (VBKW), that produces estimates that are less biased and more efficient than IPTW in cross-sectional evaluations
- > A natural extension of VBKW is to longitudinal studies in which treatment groups are defined by time of treatment receipt

Objective:

> To compare the bias and efficiency of VBKW and TWFE-based estimates in longitudinal studies

Methods:

- > Simulations with 300 observations over 20 time periods (500 replications).
- > We specified a static true treatment effect (0.2) and induced heterogeneity solely through an observable factor associated with treatment timing and outcomes
- > We conducted simulations with mild and moderate heterogeneity (coefficient on confounder = 0.03, 0.1) and in scenarios with an even split of observations across treatment cohorts (never, early[time2], late[time10]) or relatively few never treated observations (50 never, 125 early, 125 late)

Results:

VBKW produces estimates with lower absolute mean relative bias (AMRB) than TWFE						
Heterogeneity	Sample distribution across treatment times	VBKW	TWFE, main effects	TWFE, interaction between time & confounder		
		AMRB (%)	AMRB (%)	AMRB (%)		
Mild	Even	2.63	7.30	3.71		
	Uneven	0.21	7.42	3.73		
Moderate	Even	8.76	24.32	12.36		
	Uneven	0.70	24.74	12.46		

VBKW produced estimates with slightly larger mean interquartile ranges (IQR) than TWFE						
Heterogeneity	Sample distribution across treatment times	VBKW	TWFE, main effects	TWFE, interaction between time & confounder		
		IQR	IQR	IQR		
Mild	Even	.0026	.0019	.0015		
	Uneven	.0048	.0028	.0024		
Moderate	Even	.0086	.0064	.0049		
	Uneven	.0162	.0094	.0081		

Conclusions:

- > In analyses involving staggered treatment timing, VBKW produces less biased estimates than TWFE. The improvements in bias outweigh the efficiency losses that accompany VBKW.
- > When treatment effects are dynamic, we expect these differences in bias will be more pronounced. Future comparisons will include IPTWs, optimal weighting methods, and a broader range of analytic scenarios, including dynamic treatment effects.
- > Identifying best practices to account for heterogenous treatment timing is critical to improving the rigor of evidence used to support complex interventions that cannot be randomized.