

Population adjusted indirect comparisons: an industry perspective

Kirsty Rhodes

I am an AstraZeneca (AZ) employee. This presentation reflects my own views and not necessarily those of AZ.

Cross-study differences can bias comparisons (ITCs)

MAIC is often used to adjust for population differences

There are practical considerations for selecting an approach

ITCs inform decisions in the absence of head-to-head evidence

New treatment vs. approved treatments in HTA submissions

RCTs are not always possible

⁴ ITC, indirect treatment comparison; RCT, randomised controlled trial; HTA, health technology assessment

NMA continues to be widely used for conducting ITCs

ITC, indirect treatment comparison; NMA, network meta-analysis

5

Cross-study differences are of concern

- Patient characteristics
- Inclusion/exclusion criteria
- "Common" comparator is placebo really placebo?
- Outcome measurements, e.g. definition, assessment frequency, imputation of missing data
- Setting, e.g. year of study, geographical location, disease definition
- Study design, e.g. blinding, allocation concealment, treatment crossover, follow-up duration
- Unobserved differences
- Data source, e.g. trials vs. claims data

- It is important to understand differences since they affect opinions on validity of results
- Statistical analyses can address some differences, but not all.

How can we improve trust in indirect treatment comparisons?

Population differences are why we turn to MAIC

Typical NMA situation:

- Insufficient data for meta-regression
- Subgroup analyses not reported in published studies

MAIC

- ✓ Evaluated similarly to PS weighting
- ✓ Practical guidance exists from HTA agencies
- ✓ Familiar to decision makers
- ✓ Leverages IPD on one study
- ✓ Applicable also to disconnected network
- Same adjustment model may be applied to multiple outcomes
- ✓ Targets a marginal treatment effect

STC is an alternative:

- ✓ MAIC may result in low ESS; imprecise estimates
- Allows extrapolation beyond study period
- Requires one adjustment model per outcome
- Question validity of STC if MAIC fails due to substantial differences between trials

ITCs are observational – use methods to minimise bias Assess robustness of results

Perform diagnostic checks

Example: Tezepelumab vs 5 other biologics

- Biologics are approved for patients with severe asthma and connected via a common comparator
- Clinical experts identified *potential* effect modifiers
- Distributions of potential effect modifiers differ across included trials
- Tezepelumab population with IPD is broader than the population without (ideal scenario)

Outcomes:

- Annualized asthma exacerbation rate (AAER)
- AAER for exacerbations leading to hospitalization or emergency room visit.

More than one method may be appropriate

Applicable methods

- NMA
- NMA subgroup analyses
- STCs using IPD on Tezepelumab
 - STC subgroup analyses not possible; data not reported
- MAIC
- ML-NMR

Sensitivity NMAs were conducted

- Placebo-controlled trials
- Phase 3 or 4 studies

Limitations:

- Unmeasured confounding may play a role
- Cannot adjust for differences in exacerbation definition

What next for ITCs? - Statistical methods are evolving

ITCs inform decisions when RCTs are not possible, limited or unavailable.

MAIC and STC are often used for ITCs and are now very familiar to decision makers.

Recent population adjustment methods address key limitations:

Ways to adjust to a common population	Extensions to NMA models	Leveraging of all published subgroup data on treatment effects
---	-----------------------------	---

How to manage the growing number of methods?

Closing remarks

MAIC adjusts for populations differences prior to analysis of study outcomes.

Other adjustment methods may be appropriate and complimentary.

Different methods may not lead to the same conclusions.

Results should be carefully interpreted based on the approach taken and assumptions made.

All methods require included studies to be sufficiently similar.

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

Choice of method depends on context and data availability

Focus on the established methodologies:

For non-collapsible effect measures, different methods target population average and conditional treatment effects.

AgD, aggregated data; IPD, individual patient data, ITC, indirect treatment comparison; NMA network meta-analysis; MAIC, matching ¹⁴ adjusted indirect comparison; STC, simulated treatment comparison; IPTW, inverse probability of treatment weighting