

Network meta-interpolation: a fast, novel NMA approach accounting for effect modification

Panelist

Bart Heeg Vice President Global HEOR, Cytel To Adjust or Not to Adjust for Effect Modifiers in HTA Submissions; Considerations in Population-Adjusted Indirect Treatment Comparisons

What is effect modification?

Illustration source: Cochrane UK

Violation of shared effect modification?

Returning to the previous renal cell carcinoma (REF,REF) example.

			Hazard ratio	
		Intention to treat	Favorable	Intermediate and poor
Renal cell carcinoma	Lenvatinib + pembrolizumab vs. sunitinib	0.39	0.41	0.37
progression-free survival	Nivolumab + ipilimumab vs. sunitinib	0.89	1.84	0.74
			With brain metastasis	Without brain metastasis
Non-small cell lung cancer	Atezolizumab trial		0.57	0.77
(overall survival)	Nivolumab trial		0.81	0.66
			Males	Females
Heart failure (overall	Dapagliflozin trial		0.73	0.79
survival)	Empagliflozin trial		0.80	0.59

A quick search shows shared effect modification (SEM) assumption may be questioned even for therapies of the same class.

Problem

Study	Trt1	Trt2	% age > 65	% high severity	TE	SE
1	А	В	62.8	45.7	1.387	0.188
2	A	В	84.3	61.8	1.475	0.183
3	A	В	78.7	59.2	1.612	0.187
4	А	С	73.3	50.3	2.757	0.204
5	A	С	70.5	46.8	2.526	0.198
6	А	С	60.0	40.5	2.134	0.191
7	A	D	53.3	30.3	0.667	0.187

Study	Trt1	Trt2	x1	x2	TE	se
1	А	В	0.675	0.475	1.439	0.189
2	А	В	0.675	0.475	1.370	0.216
3	А	В	0.675	0.475	1.480	0.196
4	А	С	0.675	0.475	2.786	0.200
5	A	С	0.675	0.475	2.571	0.195
6	A	С	0.675	0.475	2.540	0.209
7	А	D	0.675	0.475	0.289	0.221

Description of data

Individual patient data (IPD)

• All the necessary data are here (study 7 A-D).

Aggregate data (AgD)

- Data for the intention-to-treat (ITT) population (first row) includes (study 1-6 A-B, A-C):
 - x1 and x2
 - Treatment effect (TE)
 - Standard error (SE)

Subgroups

- Data includes:
 - TE
 - SE
 - <u>But not</u> x1 corresponding to x2 subgroup and vice versa

Trt1	Trt2	x1	x2	TE	se
A	В	0.628	0.457	1.387	0.188
A	В	1		1.829	0.242
A	В	0		0.492	0.319
A	В		1	1.363	0.267
A	В		0	1.464	0.270

Three-step approach to NMI

Step 1: Based on IPD for the AgD, the x2 is estimated as belonging to x1 and vice versa

Original AgD									
Trt1	Trt2	x1	x2	TE	se				
А	В	0.628	0.457	1.387	0.188				
А	В	1		1.829	0.242				
А	В	0		0.492	0.319				
А	В		1	1.363	0.267				
А	В		0	1.464	0.270				

Imputed AgD									
Trt1	Trt2	x1	x2	TE	se				
A	В	0.628	0.457	1.387	0.188				
А	В	1.000	0.538	1.829	0.242				
А	В	0.000	0.321	0.492	0.319				
А	В	0.739	1.000	1.363	0.267				
А	В	0.535	0.000	1.464	0.270				

Three-step approach to NMI (cont.)

Step 2: Treatment effect estimation by x1 and x2 by AgD study

ITT and subgroup data

- Using the ITT and the subgroup data:
 - Relative TE is defined as a linear function of x1 and x2.
 - SE is defined as a (more complex) function of x1 and x2.

Imputed AgD									
Trt1	Trt2	x1	x2	TE	se				
A	В	0.628	0.457	1.387	0.188				
A	В	1.000	0.538	1.829	0.242				
А	В	0.000	0.321	0.492	0.319				
А	В	0.739	1.000	1.363	0.267				
А	В	0.535	0.000	1.464	0.270				

Evaluate TE and SE at certain value of x1 and x2

Trt1	Trt2	x1	x2	TE	se
A	В	0.628	0.457	1.387	0.188
A	В	1.000	0.538	1.829	0.242
A	В	0.000	0.321	0.492	0.319
A	В	0.739	1.000	1.363	0.267
A	В	0.535	0.000	1.464	0.270

Trt1	Trt2	x1	x2	TE	se	1
A	В	0.675	0.475	1.44	0.189	

Study	Trt1	Trt2	x1	x2	TE	se
1	А	В	0.675	0.475	1.439	0.189
2	А	В	0.675	0.475	1.370	0.216
3	А	В	0.675	0.475	1.480	0.196
4	А	С	0.675	0.475	2.786	0.200
5	А	С	0.675	0.475	2.571	0.195
6	А	С	0.675	0.475	2.540	0.209
7	А	D	0.675	0.475	0.289	0.221

Using functions TE and SE (previous slide)

Three-step approach to NMI (cont.)

Step 3: Results simulation study comparing NMA and NMR ML-NMR and NMI at x1=0.675 and x2=0.475

- Green line is the true estimate.
- dAB
 - NMI and network meta-regression give the lowest bias ().
- dAC
 - All methods show similar results ().
- dAD

Cytel

- NMI and ML-NMR give the lowest bias ().
- NMI seems to predict well for indirect comparisons (dBC, dBD, dCD).

Conclusion

NMI is a novel population-adjusted indirect comparison (PAIC) method.

NMI requires:

IPD of one trial, otherwise assumptions on correlation covariates needed Subgroup data (%, TE and SE) that are consistently reported over the evidence netrwork

Considerations

- Before choosing a PAIC method, consider all subgroup data available in the evidence network to identify effect modifiers (EM) and evaluate SEM.
- Consider the impact of immature data and sample size (chance findings) on conclusion of EM/SEM.
- Justify the considerations on EM, SEM and chosen PAIC method carefully.
- Guidance would be helpful on choice between PAIC vs. network meta-analysis.
 - Number of potential EMs
 - Size of distributional differences in EMs over evidence network
 - Strength association EM and relative TE
- If EM is present in evidence network, ideally the PAIC is conducted on covariate estimates reflecting clinical practice.
 - NMI
 - ML-NMR
- Present findings are based on simulation studies, which require assumptions; ideally the study can be replicated based on evidence networks with large trials for which IPD are available.

Thank you

Network meta-interpolation (NMI), network meta-analysis (NMA), network meta-regression (NMR), and multi-level network meta-regression (ML-NMR) deal differently with effect modifiers (EM).

- Even for therapies of same class, SEM might be debatable based on subgroup data
 - HR on PFS by sex show in the pembrolizumab is 0.77 [0.61;0.97] for males and 0.54 [0.37;0.81] for females. The corresponding numbers in the avelumab are 0.56 [0.42;0.75] for males and 0.90 [0.55;1.47] for females. (Motzer et al., 2019; Rini et al., 2019).
 - HR on OS for the dapagliflozin of 0.73 [0.63;0.85] for males and 0.79 [0.59;1.06] for females, corresponding empagliflozin trial shows 0.80 [0.68;0.93] for males and 0.59 [0.44;0.80] for females (McMurray et al., 2019; Packer et al., 2020).
- Despite this NMR, ML-NMR and NMA assume SEM (all lines on left same direction)
- NMI (top left) is only method that allows the association found between EM and RTE in individual studies to be leveraged to adjust for EM

