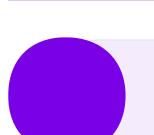
Poster # EE611

ISPOR Europe 2022

November 6-9


Viena, Austria

¹Centro Médico Universidad Central del Este, Santo Domingo, República Dominicana

- ²Hospital Pediátrico Dr. Robert Reid Cabral, Santo Domingo, República Dominicana
- Neuro Economix ³Sanofi, Bogotá, Colombia
 - ⁴Neuroeconomix, Bogotá, Colombia

INTRODUCTION

The incorporation of multivalent vaccines in vaccination schedules, provides favorable impact on coverage, vaccination time and number of injections. The substitution of the current whole cell pentavalent vaccine (DTwP-Hib-HepB) + IPV scheme for an acellular hexavalent vaccine (DTaP-IPV-Hib-HepB) represents an opportunity to improve health outcomes with reduced adverse events.

OBJECTIVE

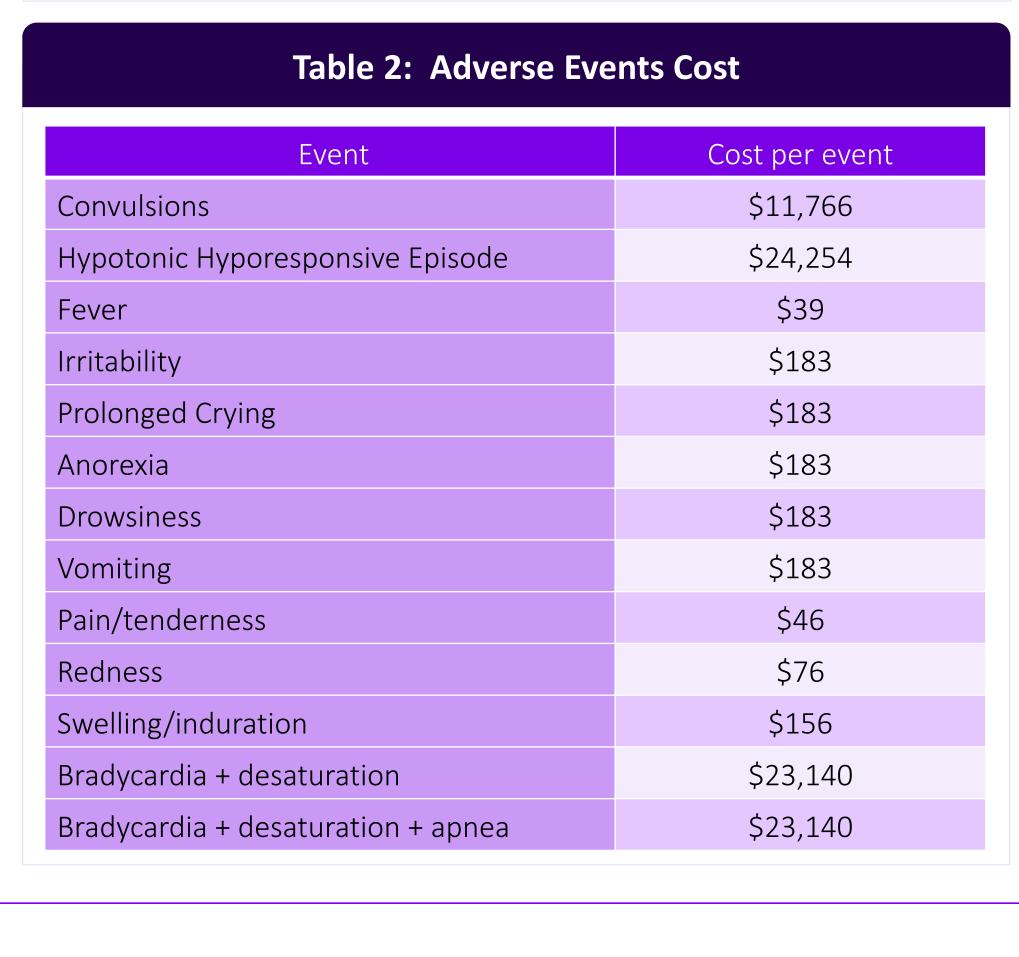
Estimate the economic impact of introducing an acellular hexavalent vaccine in the national immunization program (NIP) in Dominican Republic.

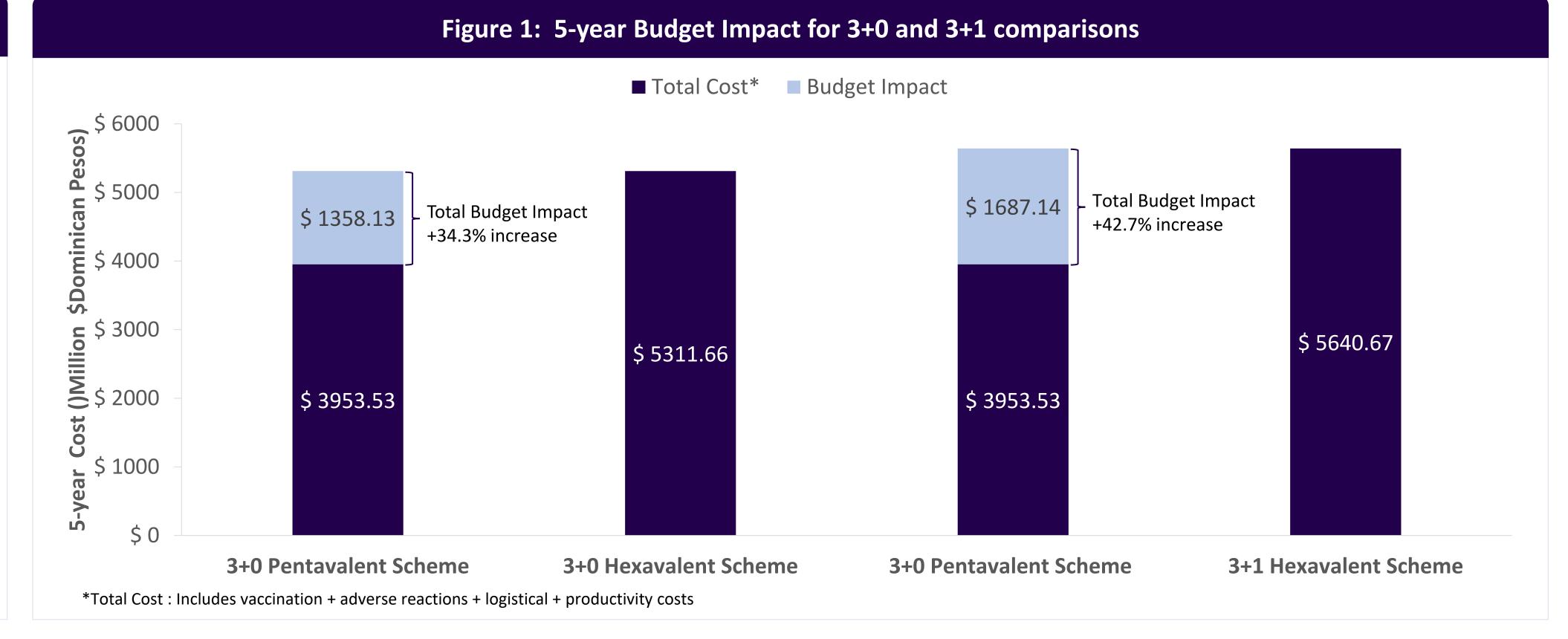
population in Dominican Republic

- A cost-minimization analysis comparing both vaccination schemes was developed including vaccine acquisition, adverse reactions (AEs) management, logistic operation and activities, and social costs associated with time spent by parents, for a 3-dose and 4-dose (booster dose included) vaccination scenarios:
- 3+0 Pentavalent Scheme¹: 3 pentavalent vaccines (DTwP-HB-Hib) + 2 IPV + 1 OPV
- 3+0 Hexavalent Scheme: 3 hexavalent vaccines (DTaP-HB-Hib-IPV)

A cost-minimization and budget impact analysis to evaluate the

introduction of an acellular hexavalent vaccination for pediatric


- 3+1 Hexavalent Scheme: 4 hexavalent vaccines (DTaP-HB-Hib-IPV)
- Costs for vaccines and waste factors were obtained from published literature²⁻⁴ (**Table 1**) and costs of AEs were calculated by micro costing from local sources (**Table 2**). All costs are expressed in \$Dominican Pesos.
- A budget impact analysis assessed the economic impact of the hexavalent vaccine introduction on the NIP budget, assuming a 100% substitution of the pentavalent vaccine + IPV scheme, for an estimated target population of ~190.000 individuals⁵.
- One-way sensitivity analysis was performed for the main inputs in the cost-minimization analysis with a 20% variation value.



POSTER HIGHLIGHT: Introducing the liquid combined acellular hexavalent vaccine into Dominican Republic's NIP represents investment to attain better health outcomes with reduced adverse events, reduced logistic operation costs and increased social benefits.

Table 1: Vaccine Costs and Waste Factor							
Vaccine	Cost per dose	Waste Factor					
DTwP	\$9	30%					
DTwPHibHepB	\$52	5%					
IPV	\$159	10%					
OPV	\$9	30%					
DTaP-IPV-Hep B-Hib	\$1,083	5%					

Table 3: Cost-minimization results per vaccinated child								
Cost category	Pentavalent	Hexavalent (3+0)	Difference	% Diff. w/ Pentavalent	Hexavalent (3+1)	Difference	% Diff. w/ Pentavalent	
Vaccination	\$ 547	\$ 3,433	\$ 2,886	527.61%	\$ 4,547	\$ 3,999	731.26%	
Adverse Reactions	\$ 1,525	\$ 734	-\$ 791	-51.87%	\$ 382	-\$ 1,143	-74.95%	
Logistical	\$ 1,176	\$ 735	-\$ 441	-37.50%	\$ 595	-\$ 579	-49.32%	
Productivity	\$ 852	\$ 592	-\$ 260	-30.52%	\$ 455	-\$ 397	-46.60%	
Total	\$ 4,100	\$ 5,494	\$ 1,394	34.00%	\$ 5,980	\$ 1,880	45.85%	

RESULTS

In the cost-minimization analysis the hexavalent vaccine produced an increase in total costs of 34.0% and 45.8% for the 3-dose and 4-dose scenarios respectively (**Table 3**). This was mainly explained by the vaccine acquisition costs.

However, the adverse events, logistic and social costs would be reduced by 51.87%–74.87%, 37.50%–49.23%, and 30.52%–46.60% (3-dose–4-dose) respectively (Table 3).

The budget impact analysis showed an overall budget increase of 34.4% and 42.7% with a 37.5% and 50% reduction in total vaccine doses administered, for the 3-dose and 4-dose scenarios respectively (Figure 1).

CONCLUSIONS

- Incorporating a hexavalent vaccine in the Dominican Republic NIP would result in a net increase in spending with a large mitigation from reduced adverse events, logistic and social costs, to 34.0% and 45.8% for the 3-dose and 4-dose scenarios respectively
- The opportunity cost of liberating vaccine storage capacity could imply a supply chain optimization to allow the introduction of newer vaccines.
- The increased spending can be regarded as an investment for overall better health outcomes and modernization of the NIP in Dominican Republic.

REFERENCES

- Ministerio de Salud Pública. Esquema Básico de Inmunización 2019 [Internet].
 2019 [cited 2021 Aug 2]. Available from: https://repositorio.msp.gob.do/handle/123456789/1126
- 2. Organización Panamericana de la Salud (OPS). Fondo Rotatorio de la OPS: Precios de las vacunas 2020 [Internet]. 2020 [cited 2020 Nov 18]. Available from: https://www.paho.org/hq/index.php?option=com_content&view=article&id=18 64:paho-revolving-fund&Itemid=4135&lang=es.
- 3. Dirección General de Presupuesto- Digepres. Presupuesto físico 2016. Tomo III [Internet]. 2016. p. 40. Available from: https://www.transparenciafiscal.gob.do/documents/20127/57119/Presupuesto+Físico+2016+-+Tomo+III.pdf/2e0a3708-574f-bac7-1702-e313fea3ab19.
- 4. Gómez V. Como determinar el factor de pérdida de una vacuna para calcular el volumen total. 2016.
- 5. Oficina Nacional de Estadística (ONE). Estimaciones y proyecciones de la población total por sexos por año calendario, según edades simples. 2000-2030 [Internet]. 2015 [cited 2021 Aug 2]. Available from: https://www.one.gob.do/datos-y-estadisticas/temas/estadisticas-demograficas/estimaciones-y-proyecciones-demograficas/.

Author contact information: Sergio Londoño — sergio.londono@sanofi.com
Study sponsored by Sanofi.