
Background
Rare disease studied: Duchenne muscular dystrophy (“DMD”)
• Progressive, debilitating neuromuscular disorder
• Prevalence reported as 15.9 cases per 100,000 in the U.S.1
Novel therapy: PF-06939926 (developed by Pfizer) 
• Designed to potentially slow or arrest DMD progression
• Phase-3 randomized control trial underway
Standard of care: Physiotherapy and glucocorticoids2

Health outcomes: Disease progression measured by the 
North-Star Ambulatory Assessment (“NSAA”)2 

• NSAA is comprised of scores of 0, 1, or 2 on 17 separate 
physical tasks. Higher scores indicate stronger 
performance on a given task, while 0 indicates inability to 
perform the task. 

Real-world data source: The Cooperative International 
Neuromuscular Research Group (“CINRG”) has established a 
large, multicenter natural history study of DMD patients and 
progression.3

Note: Includes only subjects with more than one NSAA measurement

Objective
To predict the full distribution of health 
outcomes for patients receiving a novel 
treatment for rare disease, by leveraging 
real-world data to model baseline health 
risk in tandem with trial data to estimate 
treatment effects

Methods
Prediction of real-world outcomes for DMD proceeds in seven
steps, of which we have performed six thus far (See Figure 
2).

Step 1: Model specification
• Use a Bayesian cumulative ordered logit model4 to 

represent the ordinal nature of the response variable: 
decline in NSAA skill count
• NSAA skill count is the number of tasks on which a 

subject scores 1 or 2.
• Model specifications reflect hypotheses about the functional 

form of the predictors and clinically significant changes in 
NSAA measurements.5

• Apply priors to the modeling specifications as follows:
• Intercept: Normal(logit(pi), 1) where pi is the cumulative 

probability of each possible value of the ordinal outcome 
variable

• Predictors: Regularized horseshoe with one degree of 
freedom for the global shrinkage parameter6

Step 2: Model Fitting
• Pre-process raw data according to model specifications7

• Fit Bayesian models to real-world data using Stan

Step 3: Model Checking
• Check for convergence8

• Check alignment of estimated predictor effects with clinical literature (See Figure 3)9

Step 4: Model Selection
• Evaluate each individual specification’s out-of-sample (“OOS”) performance
• Measure OOS performance using estimated log-pointwise density (“ELPD”)
• Estimate ELPD via Pareto-smoothed importance sampling leave-one-out (“PSIS-

LOO”) cross validation10

• Combine the best performing models – the two Splines specifications – to form a 
“weighted average” posterior predictive distribution (See Figure 4)

• Weight each model by its relative OOS performance11

Step 5: Model Evaluation
• Implement a nested cross-validation workflow12 to estimate the “structural” 

uncertainty for the entire process
• Calibration plots show the accuracy of the posterior predictive distribution for sub-

population baseline health & risk profiles (See Figure 5).

Step 6: Forecasting
• Simulate the posterior predictive distribution for the target 

population at timepoints of interest using the “weighted 
average” approach described in step 4 (See Figure 6) 

Step 7: Incorporate Treatment Effects
• Estimate a treatment effect by combining the trial and real-

world data
• Apply the effect to the predictive model
• Simulate the distribution of health outcomes for the treated 

population
• Not yet implemented as the phase 3 RCT is ongoing

Results

Conclusions
The prediction framework detailed here:
• Captures structural uncertainty via 

model weighting
• Generalizes to the real-world 

population
• Generates the full distribution of 

predicted outcomes, rather than just 
means

• Enables extrapolation of baseline 
health risk and treatment effects into 
the future

• Provides evidence to inform 
outcomes-based contracting and 
parameterize disease models for cost-
effectiveness analysis

• Can be applied to a wide variety of 
other rare disease estimation 
problems
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Table 1. Summary of CINRG real-world data
Data type Longitudinal;

inconsistent measurement timing
Subjects 135

N 441

Period 0 – 24 months after first NSAA 
measurement (“baseline”)

Key health 
characteristics

Age, height, & weight at baseline;
NSAA scores at baseline;
receiving glucocorticoids

Real-world 
data

Baseline 
health risk

Predicted 
Distribution 

of health 
outcomes

Trial data Treatment 
effects

Figure 1. Prediction framework

Figure 2. Modeling workflow

Model 
specification Model fitting

Model checking
• Convergence
• Marginal effects
• Posterior predictive checks

Model selection
• Leave-one-out cross-

validation via PSIS-LOO10

• Model averaging

Model evaluation
• Nested CV
• Calibration plots

Forecasting

Table 2. Model specifications
Specification Endpoint Predictors Description

Linear NSAA skill 
decline of 0 / 1 / 2 
/ 3+
at time t

Age, height, 
weight, NSAA 
skills at index; 
days since index

All predictors linear

Interactions See above See above Days since index 
interacted
with all other 
predictors

Splines, 
4 degrees 
freedom

See above See above Natural cubic splines 
(3 internal knots),
fit on all predictors

Splines,
3 degrees 
freedom

See above See above Natural cubic splines 
(2 internal knots),
fit on all predictors

Quadratic See above See above Degree 2 polynomial,
fit on all predictors

Figure 3. Marginal effects of days since index on 
probability of NSAA decline

Solid lines reflect estimated linear predictor values for the days since index predictor.  
The gray areas reflect 95% credible intervals.

Figure 4. Relative model performance 
measured by ELPD via PSIS-LOO

Specifications in the “Best” and “Similar” groups are included in the average 
posterior predictive distribution

Figure 5. Calibration plots from nested CV

Solid lines represent a perfectly calibrated model.  Points represent predicted 
probabilities of NSAA skill decline resulting from the modeling workflow, with error 
bars showing 95% credible intervals.

Figure 6. Projected distribution of NSAA 
skill declines

Error bars reflect 95% credible intervals.

Polynomial, degree=2
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