Outcomes for patients with microsatellite instability-high metastatic colorectal cancer in the real world treated with standard of care versus patients treated with nivolumab plus low-dose ipilimumab in CheckMate 142

Matthew Dixon,¹ Katrin Kupas,² Marie-Paule Ehrhart,³ Tobias Bluhmki,⁴ Eva Amann⁴

¹Bristol Myers Squibb, Lawrenceville, NJ, USA; ²Bristol Myers Squibb, Boudry, Switzerland; ³Staburo GmbH, Munich, Germany; ⁴Bristol Myers Squibb, Munich, Germany

Background

- Optimizing personalized medicine remains a key focus toward improving outcomes in metastatic colorectal cancer (mCRC), one of the leading causes of cancer-related deaths worldwide^{1,2}
- The prognostic and predictive value of mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status is becoming increasingly recognized in the mCRC setting³
- CheckMate 142 (NCT02060188) is an ongoing single-arm, phase 2, open-label, multicohort study assessing nivolumab monotherapy or nivolumab-based combination therapy in adults with dMMR/MSI-H unresectable mCRC⁴⁻⁷
- Recently published CheckMate 142 cohort 2 results with 5 years of follow-up demonstrated the long-term benefit of nivolumab in combination with low-dose ipilimumab in previously treated dMMR/MSI-H mCRC⁸
- Nivolumab in combination with low-dose ipilimumab has received approval in the United States (US), European Union, and Japan for the treatment of patients with dMMR/MSI-H mCRC who progressed following treatment with chemotherapy⁹
- To provide additional clinical context to the single-arm CheckMate 142 cohort 2 results, this retrospective study compared outcomes for patients receiving nivolumab in combination with low-dose ipilimumab in CheckMate 142 with real-world outcomes for patients receiving nonimmunotherapy (IO)-based historical standard of care (SoC) systemic therapy for dMMR/MSI-H mCRC in the second-line or later (2L+) setting

Table 1. Baseline demographic and clinical characteristics of patients before adjustment for trimmed stabilized IPTW

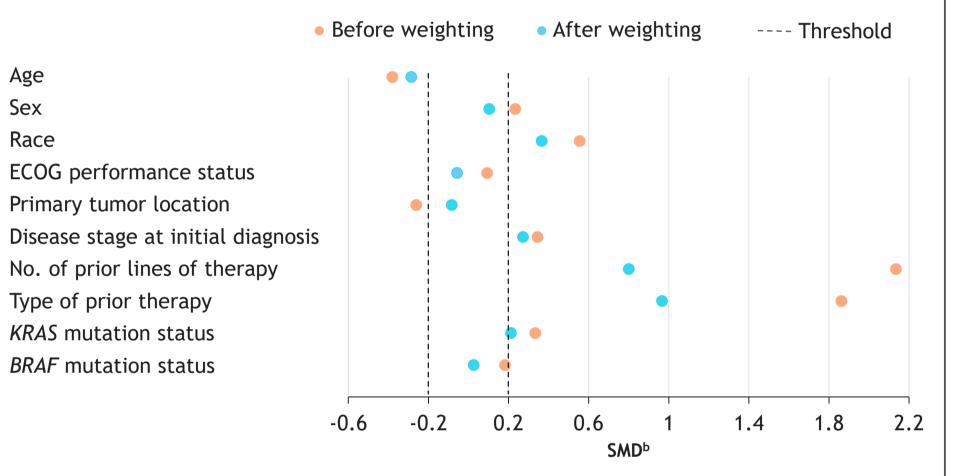
	Before weighting				
Characteristic, %	CheckMate 142 cohort 2 (N = 119)	Flatiron Health cohort (N = 146)	SMD ^a		
Age, mean, years	56.6	61.8	-0.38		
Sex			0.23		
Female	41.2	52.7			
Male	58.8	47.3			
Race			0.56		
White	92.4	73.3			
Non-White	7.6	19.9			
Not reported	0	6.8			
ECOG performance status			0.09		
0	45.4	50.0			
1	54.6	50.0			
Primary tumor location			-0.26		
Colon	95.0	87.7			
Rectum	5.0	12.3			
Disease stage at initial diagnosis			0.34		
1/11/111	55.5	42.5			
IV	44.5	55.5			
Unknown	0	2.0			
Number of prior lines of therapy			2.13		
0-1	23.5	95.2			
≥ 2	76.5	4.8			
Type of prior therapy, ^b			1.86		
Not heavily pretreated	31.1	96.6			
Heavily pretreated	68.9	3.4			
KRAS mutation status			0.33		
Wild-type	51.3	67.1			
Mutated	37.0	26.0			
Unknown/no test	11.8	6.8			
BRAF mutation status			0.18		
Wild-type	47.1	56.2			
Mutated	25.2	19.9			
Unknown/no test	27.7	24.0			

Figure 3. Treatment effect on OS

		CheckMate 142 Flatiron Health cohort 2 (NIVO + IPI) cohort (SoC)				
	n	Median OS, months (95% CI)	n	Median OS, months (95% CI)	HR (95% CI)	
Trimmed stabilized IPTW	119	NR	146	20.0 (7.5-32.6)	0.36 (0.17-0.80)	
CheckMate 142 cohort 2 "no progression" ^a	109	NR	146	20.0 (6.6-33.5)	0.33 (0.12-0.91)	
Complete case analysis	77	NR	99	36.8 (7.9-65.7)	0.46 (0.21-0.99)	
PS matched	29	NR	29	23.9 (6.8-41.0)	0.67 (0.21-2.18)	
No censoring for IO/clinical trial therapy						
No adjustment	119	NR	146	20.8 (14.7-27.6)	0.29 (0.20-0.44)	
Trimmed stabilized IPTW	119	NR	146	23.8 (18.1-29.4)	0.35 (0.17-0.74)	
PS matched	29	NR	29	37.6 (12.4-62.9)	0.51 (0.20-1.30)	
					0.125 0.25 0.5 1 2 4 NIVO + IPI ↔ SoC	

- The US-based Flatiron Health oncology electronic health records (EHR) database was used for the real-world cohort

Objectives


- To describe the demographic and clinical characteristics for patients who received \geq 1 prior line(s) of therapy with at least 1) fluoropyrimidine and 2) oxaliplatin or irinotecan for dMMR/MSI-H mCRC in CheckMate 142 cohort 2 versus the Flatiron Health cohort
- To describe and compare overall survival (OS) in patients who received ≥ 1 prior line(s) of therapy with at least 1) fluoropyrimidine and 2) oxaliplatin or irinotecan for dMMR/MSI-H mCRC in CheckMate 142 cohort 2 versus the Flatiron Health cohort

Methods

- This retrospective analysis included patients ≥ 18 years of age with dMMR/MSI-H mCRC from:
- CheckMate 142 cohort 2
- Patients were treated with nivolumab 3 mg/kg + ipilimumab 1 mg/kg once every 3 weeks (total of 4 doses) followed by nivolumab 3 mg/kg every 2 weeks, in the 2L+ setting
- The 4-year follow-up data (data cutoff: August 2020) were used
- Patients diagnosed with histologically confirmed recurrent/metastatic disease, with an Eastern Cooperative Oncology Group (ECOG) performance status of \leq 1, and who progressed during or after or were intolerant to ≥ 1 prior line of therapy comprising at least a fluoropyrimidine and oxaliplatin/irinotecan were included
- Patients with active brain or leptomeningeal metastases, autoimmune disease, conditions requiring systemic treatment with corticosteroid/immunosuppressive medications within 14 days of study drug administration, or who received prior treatment with T-cell costimulation or immune checkpoint pathway inhibitors were excluded
- The US Flatiron Health oncology EHR database
- The database compiles data from over 280 community cancer centers representing > 3 million patients with cancer in the US
- Data from patients treated with non-IO-based historical SoC between January 2013 through February 2021 were used

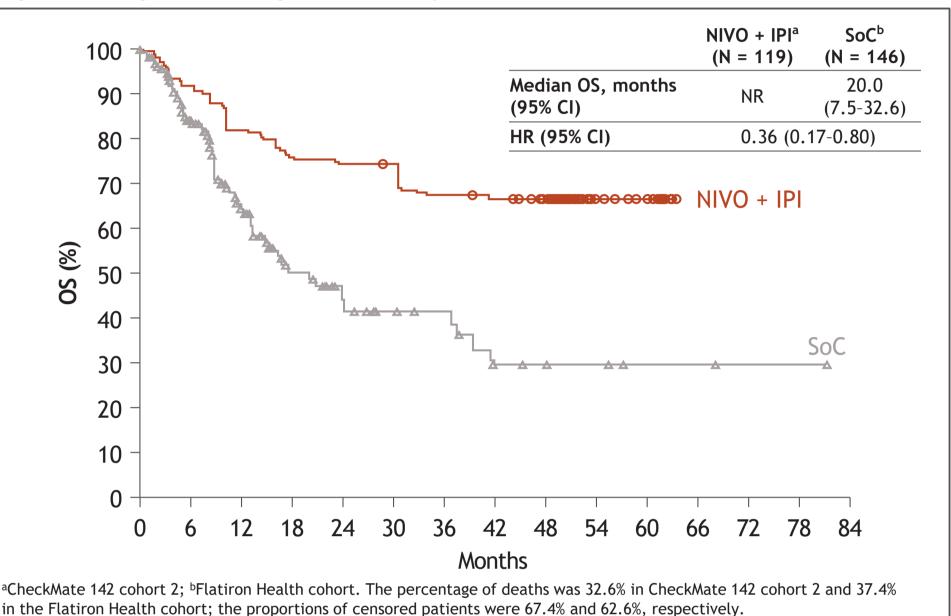

^aSMD was obtained from the CheckMate 142 cohort 2 minus the Flatiron cohort data using trimmed stabilized weights when combining the mean and standard deviation. Shaded cells with **bold values** indicate potentially important imbalances, with absolute SMD values \geq 0.20; ^bHeavily pretreated patients were those who had previously received oxaliplatin and irinotecan (in 1 line or in different lines of therapy); not heavily pretreated patients were those who had received only 1 or neither of them. BRAF, v raf murine sarcoma viral oncogene homolog B1.

Figure 1. Baseline characteristics balance plot before and after trimmed stabilized IPTW^a

^aSubgroup excludes 10 patients who had received treatment in the adjuvant setting and had tumor progression during or within 6 months of completion of adjuvant therapy. IPI, ipilimumab; NIVO, nivolumab.

Figure 4. Kaplan-Meier plot of OS adjusted for trimmed stabilized IPTW

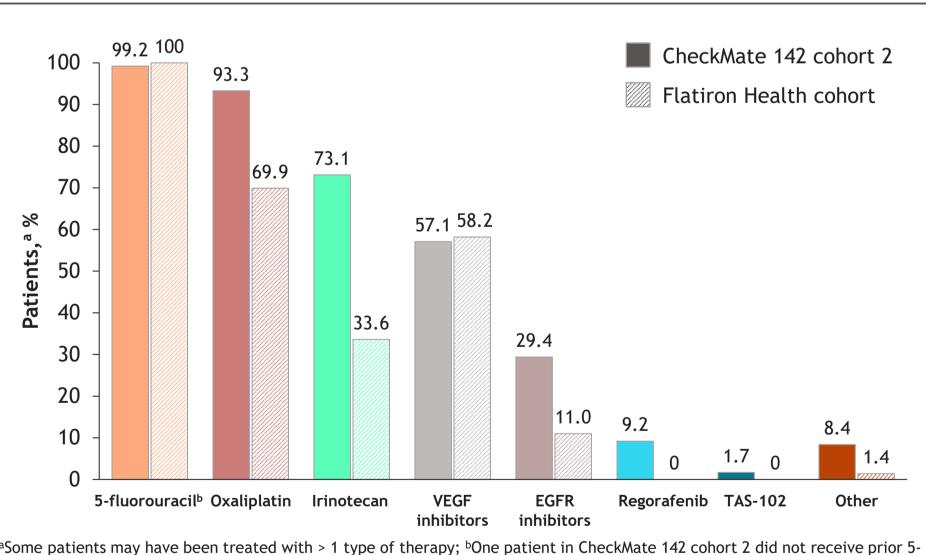
Table 3. OS adjusted for trimmed stabilized IPTW

OS rate, % (95% CI) ^a	CheckMate 142 cohort 2 (N = 119)	Flatiron Health cohort (N = 146)
6-month	92 (87-97)	84 (78-90)
18-month	76 (69-84)	50 (40-64)
24-month	74 (67-82)	44 (33-59)
36-month	67 (60-76)	42 (30-56)

^aBased on adjusted Kaplan-Meier estimates.

Cancer therapy received on index date

- Study index date was defined as the date of treatment initiation after \geq 1 prior line of therapy that included at least a fluoropyrimidine and oxaliplatin/irinotecan
- Patients diagnosed with stage IV or recurrent mCRC, with ECOG performance status 0-1, and who received \geq 1 prior line of therapy that included at least a fluoropyrimidine and oxaliplatin/irinotecan were included
- Patients with active brain or leptomeningeal metastases, autoimmune disease, who received first-line or 2L immunotherapy during the period before the index date, or who received clinical trial drugs during the period before the index date were excluded
- Patients from both CheckMate 142 cohort 2 and the Flatiron Health cohort were followed from their index date until death, loss to follow-up, or the end of study period, whichever occurred first
- Statistical analyses
- Descriptive statistics were used to assess demographic and patient characteristics in the 2 cohorts
- Kaplan-Meier estimation was used to analyze OS data, and Cox proportional hazards models were used to generate hazard ratios (HRs) and 95% confidence intervals (CIs)
- Patients in the Flatiron Health cohort who received IO as subsequent therapy were censored at the time of IO administration
- Inverse probability of treatment weighting (IPTW) based on a propensity score (PS) model was used to adjust confounders for the indirect comparison of OS outcomes¹⁰
- Several sensitivity analyses were conducted, including PS matching based on a greedy algorithm, unadjusted model (univariate regression), complete case analysis, and exploring the censoring of subsequent IO/clinical trial therapy


Results

Patients and baseline characteristics

- Baseline demographic and clinical characteristics of patients from CheckMate 142 cohort 2 (N = 119) and the Flatiron Health cohort (N = 146) included in the primary patient-level adjusted OS analysis before adjustment for trimmed stabilized IPTW are shown in Table 1
- The mean patient age was lower in CheckMate 142 cohort 2 versus the Flatiron Health cohort (56.6 vs 61.8 years)
- A higher proportion of patients in the CheckMate 142 versus Flatiron Health cohorts were male (58.8% vs 47.3%), White (92.4% vs 73.3%), had stage I-III disease at initial diagnosis (55.5% vs 42.5%), had received \geq 2 lines of prior therapy (76.5% vs 4.8%), were heavily pretreated (68.9% vs 3.4% previously received oxaliplatin and irinotecan in 1 line or in different lines of therapy), and had *KRAS* mutations (37.0% vs 26.0%)

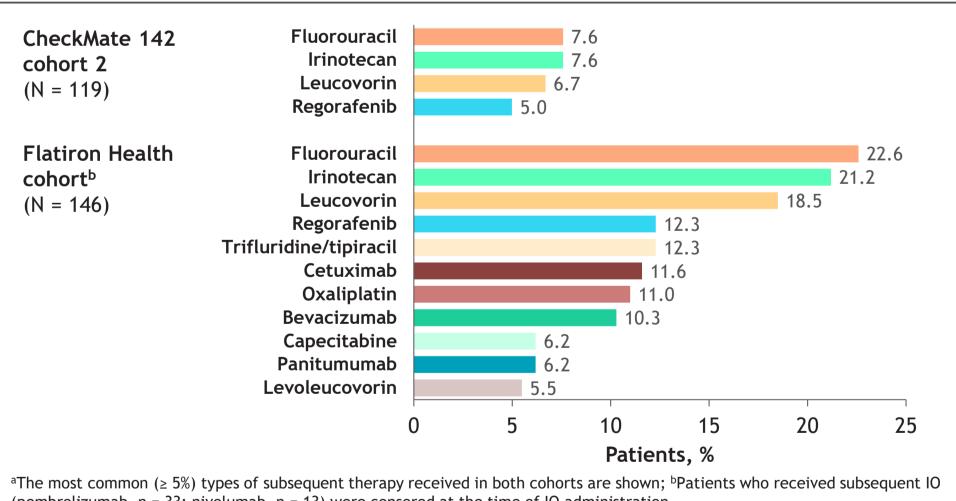
^aThe stabilized IPTWs were trimmed at the maximum of the minimum weight and the minimum of the maximum weight; SMD was obtained from the CheckMate 142 cohort 2 minus the Flatiron cohort data using trimmed stabilized weights when combining the mean and standard deviation. An absolute SMD value of \geq 0.20 indicated potentially important imbalances.

Figure 2. Types of prior therapy received in the metastatic setting

fluorouracil because they had refused chemotherapy with FOLFOX.

EGFR, epidermal growth factor receptor; FOLFOX, folinic acid + fluorouracil + oxaliplatin; TAS-102, trifluridine-tipiracil hydrochloride; VEGF, vascular endothelial growth factor.

Table 2. Summary of prior cancer therapies in the metastatic setting


	CheckMate 142 cohort 2 (N = 119)	Flatiron Health cohort (N = 146)
Number of prior regimens, n (%)		
0	1 (0.8) ^a	0
1	27 (22.7)	139 (95.2)
2	43 (36.1)	7 (4.8)
3	29 (24.4)	0
≥ 4	19 (16.0)	0
Time from completion of most recent prior regimen to index date, n (%)		
< 3 months	84 (70.6)	146 (100)
3-6 months	17 (14.3)	0
> 6 months	17 (14.3)	0
Not reported	1 (0.8) ^a	0

- All patients in CheckMate 142 cohort 2 (N = 119) started nivolumab in combination with low-dose ipilimumab on the index date
- The most common (> 5%) SoC therapies started on the index date in the Flatiron Health cohort (N = 146) were folinic acid, fluorouracil, and irinotecan (FOLFIRI) + bevacizumab (17.8%), FOLFIRI (8.9%), FOLFOX + bevacizumab (6.8%), FOLFIRI + cetuximab (6.2%), and FOLFIRI + panitumumab (5.5%)

Subsequent therapy

- Subsequent systemic therapy was received by a lower proportion of patients in CheckMate 142 cohort 2 (20.2%) versus the Flatiron Health cohort (57.5%) at the time of the analysis
- The most common (\geq 5%) subsequent therapies in CheckMate 142 cohort 2 and the Flatiron Health cohort are shown in **Figure 5**

Figure 5. Types of subsequent therapy^a received

(pembrolizumab, n = 33; nivolumab, n = 13) were censored at the time of IO administration.

Discussion

- Strengths of the study:
- Comparative effectiveness methods and the use of an external control arm can help contextualize single-arm trial results, as demonstrated in this study
- All sensitivity analyses in the study showed consistent results, thus supporting the validity of the findings
- Study limitations:
- Residual confounding may have remained even after IPTW - Some analyses were limited by small sample sizes

- CheckMate 142 cohort 2 had a lower proportion of patients with rectal tumors versus the Flatiron Health cohort (5.0% vs 12.3%)
- Following IPTW, the distributions of the following potential confounders were balanced, with standardized mean differences (SMDs) within the 0.20 threshold: sex (SMD, 0.10), ECOG performance status (SMD, -0.06), primary tumor location (SMD, -0.08), and BRAF mutational status (SMD, 0.03) (Figure 1)
- Imbalances (with an absolute value of SMD \geq 0.20) were still observed for age (SMD, -0.29), race (SMD, 0.37), disease stage at initial diagnosis (SMD, 0.27), number of lines of prior therapy (SMD, 0.80), type of prior therapy (SMD, 0.97), and *KRAS* mutational status (SMD, 0.21)
- However, despite imbalances, all potential confounders had a smaller absolute SMD after adjustment
- Prior therapies received in the metastatic setting
- The types of prior therapy received by patients with mCRC in the metastatic setting in the CheckMate 142 and Flatiron Health cohorts are shown in Figure 2
- Patients in CheckMate 142 cohort 2 were more heavily pretreated, with > 40% of patients having received \geq 3 prior regimens in the metastatic setting versus no patients in the Flatiron Health cohort (Table 2)
- The time from completion of the most recent prior regimen in the metastatic setting to index date was < 3 months for all patients in the Flatiron Health cohort
- In CheckMate 142 cohort 2, the time from completion period was \geq 3 months in 28.6% and > 6 months in 14.3% of patients

^aOne patient had not received a prior regimen in the metastatic setting because they had refused chemotherapy with FOLFOX.

Duration of observation and treatment

- Median (range) duration of observation (ie, duration of therapy + follow-up) was 49.7 (0.1-63.4) and 8.3 (0-81.2) months in CheckMate 142 cohort 2 and the Flatiron Health cohort, respectively
- Median (range) duration of nivolumab in combination with low-dose ipilimumab in CheckMate 142 cohort 2 was 24.9 (0-58.7) months, and median (range) duration of non-IO-based SoC treatment in the Flatiron Health cohort was 5.55 (0-81.2) months

OS

- In the primary patient-level adjusted analysis (IPTW), median OS was not reached (NR; 95% CI, NR) with nivolumab in combination with low-dose ipilimumab in CheckMate 142 cohort 2 versus 20.0 (95% CI, 7.5-32.6) months in patients receiving non-IO-based SoC in the Flatiron Health cohort; HR, 0.36 (95% CI, 0.17-0.80) (Figures 3 and 4)
- Multiple sensitivity analyses confirmed the robustness of the primary analysis (Figure 3)
- OS rates were higher in CheckMate 142 cohort 2 versus the Flatiron Health cohort at all evaluated timepoints (results not shown), including 6, 18, 24, and 36 months (Table 3)
- OS rates plateaued after 36 months with substantial censoring (results not shown)

— Unknown or unmeasured confounders may have impacted study results

Conclusions

- OS outcomes were significantly better for patients who received nivolumab in combination with low-dose ipilimumab in CheckMate 142 cohort 2 than for patients who received non-IO-based historical SoC therapy in the Flatiron Health cohort
- This study provides supportive evidence for the effectiveness of nivolumab in combination with low-dose ipilimumab for patients with dMMR/MSI-H mCRC in the 2L+ setting versus non-IO-based historical SoC

References

- 1. National Cancer Institute: Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Common Cancer Sites. Available from: https://seer.cancer.gov/statfacts/ html/common.html. Accessed September 6, 2022.
- 2. GBD 2017 Causes of Death Collaborators. *Lancet* 2018;392:1736-1788.
- 3. Wensink GE, et al. *Cancer Res* 2019;79(suppl):4467.
- 4. Overman MJ, et al. Lancet Oncol 2017;18:1182-1191.
- 5. Overman MJ, et al. J Clin Oncol 2018;36(suppl):554.
- 6. Overman MJ, et al. J Clin Oncol 2018;36:773-779.

Acknowledgments

- The study was supported by Bristol Myers Squibb
- All authors contributed to and approved the presentation; writing and editorial assistance were provided by Carolyn Bowler, PhD, and Vidya Rajagopalan, PhD, of Evidence Scientific Solutions, Inc., funded by Bristol Myers Squibb

7. Overman MJ, et al. J Clin Oncol 2019;37(suppl):635.

Metastatic-Colorectal-Cancer-After-Prior-

10. Austin PC. Multivariate Behav Res 2011;46:399-424.

9. BMS PR release available from:

8. Overman MJ, et al. J Clin Oncol 2022;40(suppl):3510.

https://news.bms.com/news/details/ 2021/Bristol-Myers

nivolumab-Plus-Yervoy-ipilimumab-for-the-Treatment-of-

Mismatch-Repair-Deficient-or-Microsatellite-InstabilityHigh-

Chemotherapy/default.aspx. Accessed on October 5, 2022.

Squibb-Receives-European-Commission-Approval-for-Opdivo-