Long-term Cost-effectiveness of Subcutaneous Once-weekly Semaglutide Versus Polyethylene Glycol Loxenatide for Treatment of Type 2 Diabetes Mellitus in China

Lei Liu1†, Zhen Ruan2†, Carolina Oi Lam Ung2,3, Yawen Zhang4, Yang Shen5, Sheng Han6, Ruxu Jia7, Jingtao Qiao8, Hao Hu2,3*, Lixin Guo8*

Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China 2 Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China 3 Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China 4 Novo Nordisk (China) Pharmaceuticals Co., Ltd., Beijing, China 6 International Research Center for Medicinal Administration, Peking University

Global Business School for Health, University College London, Gower Street, London, United Kingdom, WC1E 6BT 8 Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China

INTRODUCTION

- Once-weekly (OW) subcutaneous semaglutide is an injectable glucagon-like peptide-1 (GLP-1) analogue, the efficacy of which has been shown in the Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes (SUSTAIN) trial program that comprises ten reported phase 3 global clinical trials¹⁻¹⁰.
- OW semaglutide (Ozempic®; Novo Nordisk, Denmark) has been included in the National Reimbursement Drug List in China, while evidence of the long-term cost-effectiveness between OW semaglutide and China's domestic OW GLP-1RA is limited.

OBJECTIVE

• To assess the long-term cost-effectiveness of OW semaglutide 0.5mg and 1.0mg versus polyethylene glycol loxenatide (PEG-loxenatide) 0.2mg among patients with type 2 diabetes uncontrolled on metformin monotherapy in China.

METHODS

- The Swedish Institute of Health Economics Diabetes Cohort Model (IHE-DCM) was used to evaluate the long-term cost and health outcomes of OW semaglutide and PEG-loxenatide. Analysis was conducted from the perspective of Chinese healthcare system over a time horizon of 40 years.
- Baseline demographic characteristics: HbA1c, BMI, and eGFR were derived from the SUSTAIN China clinical trial. A network meta-analysis was conducted to obtain comparative treatment effects of OW semaglutide and PEG-loxenatide based on two phase 3a clinical trials. Pharmaceutical costs were sourced from the national bidding price in China. Costs of complications and utilities associated with diabetes and related complications were derived from published sources. Costs were expressed in 2021 China Yuan (CNY). Clinical and economic outcomes were discounted at a rate of 5% annually.
- Key model assumptions: (1) patients were assumed to initiate treatment with either OW semaglutide or PEG-loxenatide and then switch to basal insulin after three years; (2)HbA_{1c} was assumed to increase annually at a rate of 0.14% according to data in the study of Kahn SE, et al¹¹; (3) UKPDS 82 risk equations were applied to simulate the mortality. Risk equations sourced from the Swedish National Diabetes Register (NDR) were employed to predict the incidence of macrovascular complications.
- The base case result was evaluated through one-way sensitivity analysis and probabilistic sensitivity analysis.

RESULTS

- Over a timeframe of 40 years, both doses of OW semaglutide were associated with lower cumulative incidences of micro-and macrovascular complications and mortality. (Table 1).
- Compared with PEG-loxenatide 0.2mg, OW semaglutide 0.5mg and 1.0mg were associated with improvements in discounted life expectancy of 0.08 and 0.12 years, respectively, and discounted quality-adjusted life expectancy of 0.16 and 0.22 QALYs, respectively (Table 2).
- Clinical benefits were achieved at reduced costs, with lifetime total cost savings of 19,309 CNY with OW semaglutide 0.5mg and savings of 10,179 CNY with OW semaglutide 1.0mg, resulting from the reduction of diabetes-related complications (Table 2).
- Sensitivity analysis verified the robustness of the base case result (Table 3). At a willingness-to-pay threshold of 1x GDP per capita (CNY 80,976) per QALY gained, the probabilities of being cost-effective for OW semaglutide 0.5mg and 1.0mg relative to PEG-loxenatide 0.2mg were both of 100% (Figure 1).

Table 1. Cumulative Incidence of Micro- and Macrovascular Complications and Mortality

Item	OW semaglutide 0.5mg	OW semaglutide 1.0mg	PEG-loxenatide 0.2mg
Mortality			
Overall Mortality	96.04%	95.78%	96.54%
Cardiovascular Event Mortality	29.05%	28.32%	29.86%
Microvascular Complications			
Eye Disease			
Background Retinopathy	30.89%	29.36%	35.30%
Proliferative Retinopathy	3.24%	2.98%	4.06%
Macular Edema	17.16%	16.42%	19.37%
Proliferative Retinopathy & Macular Edema	2.77%	2.51%	3.60%
Severe Visual Loss	4.60%	4.41%	5.21%
Lower Extremity Disease			
Symptomatic Neuropathy	5.88%	5.60%	6.69%
Peripheral Vascular Disease	28.36%	28.53%	27.96%
Lower Extremity Amputation	29.45%	29.40%	29.71%
Kidney Disease			
Microalbuminuria	23.44%	22.85%	25.12%
Macroalbuminuria	13.86%	13.14%	15.97%
End Stage Renal Disease	7.26%	6.97%	8.16%
Macrovascular Complications			
Ischemic Heart Disease	19.83%	19.51%	20.57%
Myocardial Infarction			
First Myocardial Infarction	28.16%	27.19%	29.30%
Second or Subsequent Myocardial Infarction	6.57%	6.30%	6.82%
Stroke			
First Stroke	22.25%	22.05%	23.29%
Second or Subsequent Stroke	7.48%	7.42%	7.78%
Heart Failure	30.94%	30.22%	33.27%
Cardiovascular Disease (Myocardial Infarction & Stroke)	44.63%	43.70%	46.26%

Table 2. Base Case Results

Health Outcomes	OW semaglutide 0.5mg +metformin	PEG-loxenatide 0.2mg+metformin	Incremental
Life years (year)	13.16	13.08	0.08
QALYs	7.85	7.69	0.16
Total direct medical cost (CNY)	322,489	341,798	-19,309
Treatment Cost	114,775	124,353	-9,578
Microvascular Cost	126,394	131,536	-5,142
Macrovascular Cost	81,320	85,909	-4,589
ICER (CNY/QALY gained)	-	-	Dominant
Health Outcomes	OW semaglutide 1.0mg +metformin	PEG-loxenatide 0.2mg+metformin	Incremental
Life years (year)	13.19	13.08	0.12
QALYs	7.91	7.69	0.22
Total direct medical cost (CNY)	331,619	341,798	-10,179
Treatment Cost	127,105	124,353	2,752
Microvascular Cost	124,845	131,536	-6,691
Macrovascular Cost	79,670	85,909	-6,239
iviaciovascular Cost	19,070	83,909	-0,239

Table 3. Results of One-way Sensitivity Analyses

Analysis	ICER (OW semaglutide 0.5mg VS. PEG-loxenatide 0.2mg)	ICER (OW semaglutide 1.0mg VS PEG-loxenatide 0.2mg)
Base case	Dominant	Dominant
30-year time horizon	Dominant	Dominant
0% discount rates	Dominant	Dominant
8% discount rates	Dominant	Dominant
Annual drift in HbA _{1c} 0.1%	Dominant	Dominant
Annual drift in HbA _{1c} 0.2%	Dominant	Dominant
HbA1c drift using UKPDS progression	Dominant	Dominant
Upper 95% CI of HbA1c estimated treatment difference	Dominant	Dominant
Lower 95% CI of HbA1c estimated treatment difference	Dominant	Dominant
Upper 95% CI of BMI estimated treatment difference	Dominant	Dominant
Lower 95% CI of BMI estimated treatment difference	Dominant	Dominant
HbA _{1c} threshold 7%	Dominant	7,400
UKPDS 68 risk equations applied	Dominant	Dominant
Deng et al. 12 BMI disutility applied	Dominant	Dominant

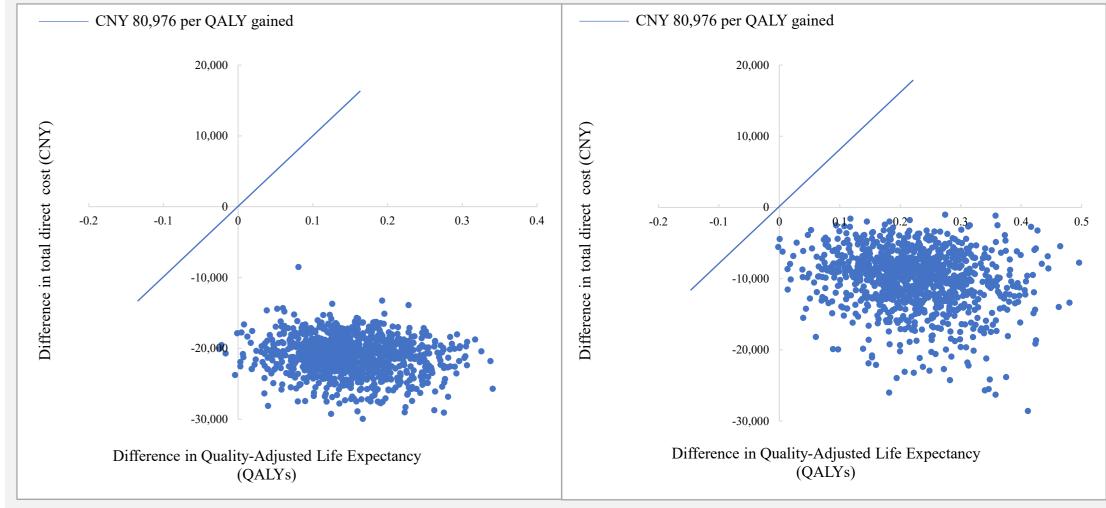


Figure 1(a). Probabilistic sensitivity analyses scatter plot. CNY 2021 RMB,

QALY quality-adjusted life-year

(OW semaglutide 0.5mg VS. FEG-Loxenatide 0.2mg)

Figure 1(b). Probabilistic sensitivity analyses scatter plot. CNY 2021 RMB,

QALY quality-adjusted life-year

(OW semaglutide 1.0mg VS. FEG-Loxenatide 0.2mg)

CONCLUSIONS

This study showed that OW semaglutide 0.5mg and OW semaglutide 1.0mg were estimated to be dominant (more effective and less costly) versus PEG-loxenatide 0.2mg in patients with type 2 diabetes uncontrolled on metformin monotherapy in China.

Reference:

- 1. Sorli C, et al. Lancet Diabetes Endocrinol. 2017;5:251–60;
- 2. Ahrén B, et al. Lancet Diabetes Endocrinol. 2017;5:341–54;
- 3. Ahmann AJ, et al. Diabetes Care. 2018;41:258-66;
- 4. Pratley RE, et al. Lancet Diabetes Endocrinol 2018;6:275–86;
- 5. Lingvay I, et al. Lancet Diabetes Endocrinol. 2019 Nov;7(11):834-844;
- 6. ZINMAN B, et al. Lancet Diabetes Endocrinol. 2019;7(5):356-367;
- 7. Aroda VR, et al. Lancet Diabetes Endocrinol. 2017;5(5):355-66;
- 8. Rodbard HW, et al. J Clin Endocrinol Metab. 2018;103:2291-301.
- 9. Ji et al. Diabetes Obes Metab 2021 Feb;23(2):404-414.
- 10. Capehorn MS et al. Diabetes Metab 2019;101117 11. Kahn SE, et al. N Engl J Med. 2006;355(23):2427-43.
- 12. Deng, Jing et al. Journal of medical economics vol. 18,11 (2015): 974-89. doi:10.3111/13696998.2015.1067622