A Cost-Utility Analysis of Ferric Derisomaltose Versus Ferric Carboxymaltose in Patients with Inflammatory Bowel Disease in Italy

Cortesi PA1, Mazzaglia G1, Rethmeier LO2, Nottmeier M2, Pollock RF3

1 University of Milan Bicocca, Monza, Italy 2 Pharmacosmos A/S, Holbæk, Denmark 3 Covance Research Ltd, Harpenden, UK

Background

Anemia is the most common extraintestinal complication of inflammatory bowel disease (IBD), with approximately half of cases caused by iron deficiency. Infravenous (IV) iron is the preferred treatment where oral iron is contraindicated, ineffective or not tolerated, or where correction of iron deficiency is urgent. The recent PHOSPHARE-IBD randomized controlled trial (RCT; ClinicalTrials.gov ID NCT04768188) reported significantly higher incidence of hypophosphatemia after treatment with ferric carboxymaltose (FCM) than ferric derisomaltose (FDI), confirming the findings of the PHOSPHARE-IBD trial.1,2

The objective of the present study was to evaluate the cost-utility of FDI versus FCM in patients with IBD in Italy.

Methods

Cost-utility model

A previously published patient-level cost-utility model of iron deficiency was used to evaluate the cost-utility of FDI versus FCM in patients with inflammatory bowel disease in Italy (Figure 1). The model was configured to capture differences in the incidence of hypophosphatemia based on the PHOSPHARE-IBD trial, differences in iron formulations, and differences in quality of life (QoL) based on SF-6D utility values derived from the PHOSPHARE-IBD trial. Hypophosphatemia treatment was modeled based on a published treatment algorithm and real world data.3

Modeling of iron need and administration

Iron need was modeled based on simplified tables of iron need, with each simulated patient being assigned baseline hemoglobin and bodyweight values based on lognormal distributions parameterized using the characteristics of patients enrolled in the PHOSPHARE-IBD trial. The number of infusions of FDI and FCM required to address the modeled iron need was calculated based on the posological characteristics described in the product labels. Given the chronic nature of IBD, it was assumed that patients would experience IDA recurrences over time, with median time to recurrence of 16 months based on a 2009 pooled analysis of studies in patients with IBD.4 The number of iron treatment courses, disease-related QoL, and differences in quality of life (QoL) based on SF-6D utility values derived from the PHOSPHARE-IBD trial (Figure 2).

Italian analysis

The analysis was conducted over a five-year time horizon from a national payer perspective. Costs in the analysis were based on diagnosis-related groups (DRGs), which covered both infusion and drug costs for IV iron infusions and phosphate replenishment in patients experiencing hypophosphatemia. Future costs and effects were discounted at 3.5% per annum. The model reported outcomes expressed in terms of costs and quality-adjusted life expectancy (QALYs) based on a willingness-to-pay threshold of €30,000 per QALY gained. Sensitivity analyses were performed.

Results

Base case results

Patients treated with FCM or FDI received an average of 3.90 iron treatment courses over the five-year time horizon; however, patients treated with FDI required 1.43 infusions per treatment course, versus 1.82 with FCM, resulting in 1.52 fewer iron infusions over the full time horizon (7.20 infusions with FCM versus 5.68 infusions with FCI).

This difference result in infusion-related cost savings of €110 per patient with FDI (€1,467 with FCM versus €1,157 with FDI). Compared with FCM, FDI increased quality-adjusted life expectancy by 0.075 QALYs from 2.57 QALYs to 2.64 QALYs.

Costs of monitoring and treating hypophosphatemia after treatment with FCM were €169 per patient, resulting in total cost savings of €478 per patient treated with FDI (€1,635 with FCM versus €1,157 with FDI). FDI was therefore the dominant intervention, and the NMB of FDI versus FCM was €478 per patient treated with FDI (€1,467 with FCM versus €1,157 with FDI).

This difference result in infusion-related cost savings of €310 per patient with FDI (€1,467 with FCM versus €1,157 with FDI). Calculated iron need, and differences in quality of life (QoL) based on SF-6D utility values derived from the PHOSPHARE-IBD trial. Hypophosphatemia treatment was modeled based on a published treatment algorithm and real world data.3

Modeling of iron need and administration

Iron need was modeled based on simplified tables of iron need, with each simulated patient being assigned baseline hemoglobin and bodyweight values based on lognormal distributions parameterized using the characteristics of patients enrolled in the PHOSPHARE-IBD trial. The number of infusions of FDI and FCM required to address the modeled iron need was calculated based on the posological characteristics described in the product labels. Given the chronic nature of IBD, it was assumed that patients would experience IDA recurrences over time, with median time to recurrence of 16 months based on a 2009 pooled analysis of studies in patients with IBD.4 The number of iron treatment courses, disease-related QoL, and differences in quality of life (QoL) based on SF-6D utility values derived from the PHOSPHARE-IBD trial (Figure 2).

Italian analysis

The analysis was conducted over a five-year time horizon from a national payer perspective. Costs in the analysis were based on diagnosis-related groups (DRGs), which covered both infusion and drug costs for IV iron infusions and phosphate replenishment in patients experiencing hypophosphatemia. Future costs and effects were discounted at 3.5% per annum. The model reported outcomes expressed in terms of costs and quality-adjusted life expectancy (QALYs) based on a willingness-to-pay threshold of €30,000 per QALY gained. Sensitivity analyses were performed.

Results

Base case results

Patients treated with FCM or FDI received an average of 3.90 iron treatment courses over the five-year time horizon; however, patients treated with FDI required 1.43 infusions per treatment course, versus 1.82 with FCM, resulting in 1.52 fewer iron infusions over the full time horizon (7.20 infusions with FCM versus 5.68 infusions with FCI).

This difference result in infusion-related cost savings of €110 per patient with FDI (€1,467 with FCM versus €1,157 with FDI). Compared with FCM, FDI increased quality-adjusted life expectancy by 0.075 QALYs from 2.57 QALYs to 2.64 QALYs.

Costs of monitoring and treating hypophosphatemia after treatment with FCM were €169 per patient, resulting in total cost savings of €478 per patient treated with FDI (€1,635 with FCM versus €1,157 with FDI). FDI was therefore the dominant intervention, and the NMB of FDI versus FCM was €478 per patient treated with FDI (€1,467 with FCM versus €1,157 with FDI).

This difference result in infusion-related cost savings of €310 per patient with FDI (€1,467 with FCM versus €1,157 with FDI). Calculated iron need, and differences in quality of life (QoL) based on SF-6D utility values derived from the PHOSPHARE-IBD trial. Hypophosphatemia treatment was modeled based on a published treatment algorithm and real world data.3

Italian analysis

The analysis was conducted over a five-year time horizon from a national payer perspective. Costs in the analysis were based on diagnosis-related groups (DRGs), which covered both infusion and drug costs for IV iron infusions and phosphate replenishment in patients experiencing hypophosphatemia. Future costs and effects were discounted at 3.5% per annum. The model reported outcomes expressed in terms of costs and quality-adjusted life expectancy (QALYs) based on a willingness-to-pay threshold of €30,000 per QALY gained. Sensitivity analyses were performed.

Results

Base case results

Patients treated with FCM or FDI received an average of 3.90 iron treatment courses over the five-year time horizon; however, patients treated with FDI required 1.43 infusions per treatment course, versus 1.82 with FCM, resulting in 1.52 fewer iron infusions over the full time horizon (7.20 infusions with FCM versus 5.68 infusions with FCI).

This difference result in infusion-related cost savings of €110 per patient with FDI (€1,467 with FCM versus €1,157 with FDI). Compared with FCM, FDI increased quality-adjusted life expectancy by 0.075 QALYs from 2.57 QALYs to 2.64 QALYs. Other analyses, including changing the cost per infusion of FDI, cost of serum phosphate testing, cost of intravenous phosphate replenishment, and the incidence of all and severe hypophosphatemia after FCM had a negligible effect on the NMB, with changes falling below €50 over the full time horizon.

In probabilistic sensitivity analyses, all model iterations fell in the southeast quadrant of the scatterplot, showing FDI to be less costly and more effective than FCM. A cost-effectiveness acceptability curve generated from the model iterations showed a 100% likelihood of cost-effectiveness at willingness-to-pay thresholds of €60 and €100,000 per QALY gained.

Conclusions

The analysis showed that FDI would improve patient quality of life and reduce direct healthcare expenditure versus FCM in patients with IBD in Italy.

Cost savings with FDI were driven by reductions in iron infusions and hypophosphatemia monitoring and treatment.

Sensitivity analyses

FDI remained dominant in all one-way sensitivity analyses conducted; however, the analyses showed that the base case was most sensitive to changes in baseline bodyweight (Figure 3), with a 10% reduction in mean baseline bodyweight reducing the NMB by €162, from €2,721 in the base case to €2,559 (Figure 3). Changes in mean baseline hemoglobin levels had an effect on a similar order of magnitude to changes in mean baseline bodyweight, with a 10% reduction in baseline hemoglobin resulting the NMB by €171 to €2,536. Other analyses, including changing the cost per infusion of FDI, cost of serum phosphate testing, cost of intravenous phosphate replenishment, and the incidence of all and severe hypophosphatemia after FCM had a negligible effect on the NMB, with changes falling below €50 over the full time horizon.

In probabilistic sensitivity analyses, all model iterations fell in the southeast quadrant of the scatterplot, showing FDI to be less costly and more effective than FCM. A cost-effectiveness acceptability curve generated from the model iterations showed a 100% likelihood of cost-effectiveness at willingness-to-pay thresholds of €60 and €100,000 per QALY gained.