









# Benefit Package of Universal Coverage Scheme for Hereditary Angioedema (HAE) Caused By C1 Esterase Inhibitor Deficiency (C1-INH)

Sukrit Kanchanasurakit<sup>1-4</sup>, Surasak Saokaew<sup>1,3-4</sup>, Chayanis Kositamongkol<sup>5</sup>, Kirati Kengkla<sup>1</sup>, and Pochamana Phisalprapa<sup>5</sup>

<sup>1</sup>Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Thailand, <sup>2</sup>Division of Pharmaceutical care, Department of Pharmacy Phrae Hospital, Phrae, Thailand, <sup>3</sup>Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Phayao, Thailand, <sup>4</sup>Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand, Division of Ambulatory Medicine, <sup>5</sup>Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

# **OBJECTIVES**

Hereditary angioedema (HAE) is a rare and life-threatening genetic disease. This disease can lead to recurrent attacks of severe swelling occurring in areas such as the face, gastrointestinal tract, and larynx. These attacks can result in hospitalization or death. Thus, effective medications are necessary for treating the acute attacks. However, Thailand did not specify medication for treatment and prophylaxis. Therefore, effective strategies for universal health coverage for the management of HAE patients remain a challenge in Thailand. This review aims to determine the extent of research in the published literature that examine benefit package and strategies for universal health coverage for the management of HAE patients in Thailand.

# **METHODS**

On 5th January 2022, Embase, Scopus, OpenGrey, PubMed, Science direct, Clinicaltrials.gov, and Cochrane were searched for literature published from inception. Studies evaluating the efficacy and safety of medication for treating acute attacks in HAE patients were included. Additionally, this study performed a survey of data from the drug company, experts in the field, and stakeholders. Our survey asked about the situation, cost, and health service systems for screening, diagnosis, treatment, and referring HAE patients in Thailand.

# RESULTS

Of 4,834 articles identified, 28 studies were included. Twenty-four studies are original articles, one study was a systematic review and network meta-analysis, and three studies were cost-effectiveness analyses. From current trials, first-line therapy such as Plasma-derived C1 inhibitor, Recombinant C1 inhibitor Conestat alfa, Icatibant, and Ecallantide showed benefits over placebo. However, the study related to the full economic evaluation of first-line therapy in Thailand has not been provided.

### Figure 1 **PRISMA Flow** 4,834 records identified through database searching in January 5, 2022 412 PubMed **1,207 EMBASE** 1,042 Science direct 1,890 SCOPUS 255 Cochrane 0 OpenGrey 28 Clinicaltrials.gov 1,511 duplicate records removed 3,323 records screened on the basis of title and abstract 3,166 excluded on title and abstract screening. 157 full-text articles assessed for eligibility. 129 excluded on full-text articles screening. 37 non-target population 21 not measure interesting outcome. 26 in vitro study 39 other study design 6 same participants 28 trials included in qualitative synthesis. 24 records are original article 1 record is systematic review and network meta-analysis 3 records are cost-effectiveness

### Table 1 Estimated number of HAE cases in Thailand (2023-2027)

|                                                                                    | 2023       | 2024       | 2025       | 2026       | 2027       |
|------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|
| Thai population                                                                    | 67,903,079 | 68,785,819 | 69,680,035 | 70,585,876 | 71,503,492 |
| Predicting the number of cumulative patients with HAE (1:50,000 of the population) | 1,358      | 1,376      | 1,394      | 1,412      | 1,430      |
| Patients who have been screened                                                    |            |            |            |            |            |
| New suspected HAE patients screened with a C4 level (0.0001% of the population)    | 68         | 69         | 70         | 71         | 72         |
| New cases with low C4 levels (35%)                                                 | 24         | 24         | 25         | 25         | 25         |
| New patients with confirmed HAE disease (88%)                                      | 21         | 21         | 22         | 22         | 22         |
| Patients with confirmed HAE accumulated from the previous year                     | 63         | 84         | 105        | 127        | 149        |
| Total confirmed cases of HAE                                                       | 84         | 105        | 127        | 149        | 171        |

## Table 2 Budget Implications of HAE Diagnosis

| Unit: Baht                                                      | Step with C1 | Step with gene mutation | All at one |  |  |  |  |
|-----------------------------------------------------------------|--------------|-------------------------|------------|--|--|--|--|
| Cost of diagnosis and confirmation                              |              |                         |            |  |  |  |  |
| 1 <sup>st</sup> year (2023)                                     | 130,720      | 152,720                 | 330,720    |  |  |  |  |
| 2 <sup>nd</sup> year (2024)                                     | 130,720      | 152,720                 | 330,720    |  |  |  |  |
| 3 <sup>rd</sup> year (2025)                                     | 134,500      | 156,500                 | 344,500    |  |  |  |  |
| 4 <sup>th</sup> year (2026)                                     | 134,500      | 156,500                 | 344,500    |  |  |  |  |
| 5 <sup>th</sup> year (2027)                                     | 134,500      | 156,500                 | 344,500    |  |  |  |  |
| The cost of transporting specimens                              |              |                         |            |  |  |  |  |
| 1 <sup>st</sup> year (2023)                                     | 280,000      | 280,000                 | 240,000    |  |  |  |  |
| 2 <sup>nd</sup> year (2024)                                     | 280,000      | 280,000                 | 240,000    |  |  |  |  |
| 3 <sup>rd</sup> year (2025)                                     | 290,000      | 290,000                 | 250,000    |  |  |  |  |
| 4 <sup>th</sup> year (2026)                                     | 290,000      | 290,000                 | 250,000    |  |  |  |  |
| 5 <sup>th</sup> year (2027)                                     | 290,000      | 290,000                 | 250,000    |  |  |  |  |
| Including expenses for both diagnosis and delivery of specimens |              |                         |            |  |  |  |  |
| 1 <sup>st</sup> year (2023)                                     | 410,720      | 434,720                 | 570,720    |  |  |  |  |
| 2 <sup>nd</sup> year (2024)                                     | 410,720      | 434,720                 | 570,720    |  |  |  |  |
| 3 <sup>rd</sup> year (2025)                                     | 424,500      | 448,500                 | 594,500    |  |  |  |  |
| 4 <sup>th</sup> year (2026)                                     | 424,500      | 448,500                 | 594,500    |  |  |  |  |
| 5 <sup>th</sup> year (2027)                                     | 424,500      | 448,500                 | 594,500    |  |  |  |  |
| Total 5 years                                                   | 2,094,940    | 2,214,940               | 2,924,940  |  |  |  |  |
| Lowest average budget per person                                | 13,780       | 13,780                  | 23,780     |  |  |  |  |
| Maximum average budget per person                               | 33,780       | 39,780                  | 23,780     |  |  |  |  |

### **Table 3** Budget Implications of HAE Treatment

| Unit: Baht                           | Supportive treatment with Fresh Frozen Plasma | Treatment with Icatibant | Difference |  |  |  |  |
|--------------------------------------|-----------------------------------------------|--------------------------|------------|--|--|--|--|
| Budget burden on payer perspective   |                                               |                          |            |  |  |  |  |
| 1 <sup>st</sup> year (2023)          | 16,557,798                                    | 23,363,948               | 6,806,150  |  |  |  |  |
| 2 <sup>nd</sup> year (2024)          | 20,745,696                                    | 29,191,645               | 8,445,949  |  |  |  |  |
| 3 <sup>rd</sup> year (2025)          | 25,065,344                                    | 35,316,259               | 10,250,915 |  |  |  |  |
| 4 <sup>th</sup> year (2026)          | 29,449,590                                    | 41,423,153               | 11,973,563 |  |  |  |  |
| 5 <sup>th</sup> year (2027)          | 33,769,237                                    | 47,547,767               | 13,778,530 |  |  |  |  |
| Budget burden on patient perspective |                                               |                          |            |  |  |  |  |
| 1 <sup>st</sup> year (2023)          | 807,900                                       | 452,100                  | -355,800   |  |  |  |  |
| 2 <sup>nd</sup> year (2024)          | 1,011,000                                     | 564,900                  | -446,100   |  |  |  |  |
| 3 <sup>rd</sup> year (2025)          | 1,222,200                                     | 683,400                  | -538,800   |  |  |  |  |
| 4 <sup>th</sup> year (2026)          | 1,434,900                                     | 801,600                  | -633,300   |  |  |  |  |
| 5 <sup>th</sup> year (2027)          | 1,646,100                                     | 920,100                  | -726,000   |  |  |  |  |
| Total budget                         |                                               |                          |            |  |  |  |  |
| 1 <sup>st</sup> year (2023)          | 17,365,698                                    | 23,816,048               | 6,450,350  |  |  |  |  |
| 2 <sup>nd</sup> year (2024)          | 21,756,696                                    | 29,756,545               | 7,999,849  |  |  |  |  |
| 3 <sup>rd</sup> year (2025)          | 26,287,544                                    | 35,999,659               | 9,712,115  |  |  |  |  |
| 4 <sup>th</sup> year (2026)          | 30,884,490                                    | 42,224,753               | 11,340,263 |  |  |  |  |
| 5 <sup>th</sup> year (2027)          | 35,415,337                                    | 48,467,867               | 13,052,530 |  |  |  |  |
| Total 5 years                        | 131,709,765                                   | 180,264,872              | 48,555,107 |  |  |  |  |

### CONCLUSIONS

HAE may affect the budget of Thailand if patients do not receive appropriate treatment. Thus, screening, diagnosis, and effective medication for treating acute attacks are essential measures to decrease the overall HAE-related healthcare cost. However, full economic evaluation studies of first-line therapy in Thailand are needed.