Potential Population Health Gains of an Accessible Blood-Based Genomic Test to Improve Lung Cancer Screening

Peter B. Bach,¹ Jesse D. Ortendahl,² Niti Trivedi,¹ Chris Cisar¹

¹Delfi Diagnostics Inc., Baltimore, MD, USA; ²Partnership for Health Analytic Research, Beverly Hills, CA, USA

Annual screening for lung cancer by low-dose computed tomography (LDCT) reduces mortality, but sparse adoption has limited population benefits in both the US and worldwide.1-

- Multiple Monte Carlo simulations were performed in a hypothetical cohort of 2 million lung cancer screening-eligible individuals to compare clinical outcomes over a 5-year period for the following
- A. NO GENOMIC TEST: The rate of LDCT screening increases from 6% at baseline to 7% by year 5.
- B. GENOMIC TEST (95/10): The rate of Genomic Test use increases from 6% at baseline to 14% by year 5; 95% of Genomic Test(+) cases and 10% of Genomic Test(-) cases proceed to LDCT
- C. GENOMIC TEST (75/25): The rate of Genomic Test use increases from 6% at baseline to 14% by year 5; 75% of Genomic Test(+) cases and 25% of Genomic Test(-) cases proceed to LDCT
- The Genomic Test was set to 83% sensitivity and 50% specificity for lung cancer.

MODEL ASSUMPTIONS

- Model assumptions were derived from published clinical trials of LDCT screening, and population smoking and age distribution from the National Health and Nutrition Examination Survey 2017 to
- Individuals met the lung cancer screening eligibility criteria recommended in 2021 by the US Preventive Services Task Force⁶: adults 50-80 years old who have a smoking history of at least 20 pack-years and currently smoke or have quit within the past 15
- Annual probability of having a non-screen-detected
- Other model assumptions are shown in the tables.

OUTCOMES

- Impact of the use of a Genomic Test on:
- Percentage of cancer detected in population, by
- Stage distribution of screen-detected cancers
- Number of false-positives, by scenario

. National Lung Screening Trial Research Team, et al. N Engl J Med. 2011;365(5):395-409.

2. de Koning HJ, et al. *N Engl J Med*. 2020;382(6):503-513. 3. Fedewa SA, et al. *J Natl Cancer Inst*. 2021;113(8):1044-1052. 4. Pham D, et al. Clin Lung Cancer. 2020;21(3):e206-e211. 5. National Health and Nutrition Examination Survey Data

6. US Preventive Services Task Force, et al. JAMA. 2021;325(10):962-970. 7. Pinsky PF, et al. *J Med Screen*. 2013;20(3):165-168.

Poster #EPH125 was presented at ISPOR Europe 2022;

6-9 November 2022; Vienna, Austria.

http://www.cdc.gov/nchs/nhanes.htm

The poster content is the intellectual property of the authors. Contact Peter Bach at peter.bach@delfidiagnostics.com to request permission to reuse or distribute. PBB, NT, and CC are employed by and have stock ownership in Delfi Diagnostics, Inc. JDO is a paid consultant of Delfi Diagnostics, Inc. The authors thank Katalin Bognar for help with data analyses and interpretation, and Anna Lau, PhD for help with poster design and layout.

How could a blood-based genomic test improve the uptake and efficiency of lung cancer screening?

SCENARIO A: NO GENOMIC TEST

MODEL ASSUMPTIONS

Screening Uptake	Year 1	Year 2	Year 3	Year 4	Year 5
A. LDCT (No Genomic Test) ³	5.9%	6.2%	6.5%	6.8%	7.0%
B. Genomic Test (95/10)	5.9%	8.0%	10.0%	12.0%	14.0%
LDCT if Test(+)	95%	95%	95%	95%	95%
LDCT if Test(-)	10%	10%	10%	10%	10%
C. Genomic Test (75/25)	5.9%	8.0%	10.0%	12.0%	14.0%
LDCT if Test(+)	75%	75%	75%	75%	75%
LDCT if Test(-)	25%	25%	25%	25%	25%

Stage Distribution at Detection ¹	Stage I	Stage II	Stage III	Stage IV
Screen detected at 1st screen	54.2%	7.6%	21.9%	16.3%
Screen detected at 2nd screen	58.9%	10.0%	18.3%	12.8%
Screen detected at 3rd screen	62.8%	5.8%	15.9%	15.5%
Not screen detected	34.7%	7.4%	26.5%	31.4%

Screening Test Characteristics	GENOMIC TEST	LDCT ⁷
True-positive rate	75%-90%	93%
False-positive rate	50%	24%
Positive predictive value	1.0%	2.4%
Negative predictive value	99.8%	99.9%

SCENARIO B: GENOMIC TEST (95/10)

SCENARIO C: GENOMIC TEST (75/25)

SCREEN-DETECTED CANCERS (A/B)

SCREEN-DETECTED CANCERS (A/C)

FALSE-POSITIVE TO TRUE-POSITIVE RATE (A/C)

PERCENT OF STAGE I AND STAGE IV CANCERS AT DETECTION (A/B)

PERCENT OF STAGE I AND STAGE IV CANCERS AT DETECTION (A/C)

STAGE IV

In this simulation model, a Genomic Test designed to improve uptake and efficiency of lung cancer screening shows substantial population-level health gains across a range of assumptions of its impact on subsequent LDCT utilization.