

Unlock Real-World Data with Machine Learning

The Professional Society for Health Economics and Outcomes Research European Conference, Vienna, Austria

November 6–9, 2022

30STON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS

Speakers

Managing Principal Analysis Group, Inc. Boston, MA, USA

Jia Zhong Sc.D.

Manager Analysis Group, Inc. Boston, MA, USA

Xiaochen Zhang M.S.

Project Director Beijing Huashu Yihui Technology Co. Beijing, China

Max Leroux M.Sc.

Director of Data Science Analysis Group, Inc. Montreal, Quebec, Canada

Jimmy Royer Ph.D.

Principal Analysis Group, Inc., Montreal, Quebec, Canada

Real-world evidence (RWE) and machine learning (ML)

Opportunities

RWE

Increasing demand for highquality RWE from regulators, payers, and practitioners Using ML to address RWD heterogeneity across sources and ensure data validity, velocity, and interpretability

> A powerful tool while facing challenges in transparency and interpretability

ML

Part I – Machine Learning in the Era of Big Data: Real-World Applications in Multicenter Studies in China

Jia Zhong, Sc.D. Manager Analysis Group Email: jia.zhong@analysisgroup.com

November 6–9, 2022 Vienna, Austria

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS

Agenda

Multicenter studies confer distinct advantages in real-world evidence

An increasing demand to support regulatory submissions and payer negotiation

Geographic coverage

Obtain understanding across regions and cities

Sample size

Maximize statistical power

Recruitment

Facilitate recruitment by combining patient pools

Clinical variability

Represent various diagnostic and treatment modalities across centers

Patient heterogeneity

Enable in-depth investigation of estimated effects in patient subgroups of interest

Generalizability

Generate unbiased inferences beyond the study population

Challenges in real-world multicenter studies

ML technology provides efficient alternatives to empirical approaches

Machine learning enhances three key features of real-world data

Harnessing the power of RWD

Dynamically integrate various data sources

- Different data sources residing within the hospital systems represent different aspects of the patient journey
- An automated data capture system was developed to filter, process, and deposit tiny bits of data at a nearly constant rate

Uniform rules to establish consistency

- Combine consensus-based decision logic and data-driven optimization to create a set of transparent rules that can be used across centers
- Unify data standards and definition in multi-center settings

Maximize usability of historical information

- Provides a set of fact-based lenses to review data based on traceable data
- Can be adjusted as the clinical guidelines update and science advances

How does it work?

ML-powered Data acquisition | Data Data cleaning Deployment dynamic disease transformation model Real-time data from Transform Resolve data Deploy to the real-A continuous hospital information unorganized raw iterating machine world data collection conflicts. systems involving data in various redundancy, and learning process pipeline multiple data formats to structured missingness leveraging and accessible data mathematical sources and repositories modeling to tune and optimize model performance 03 01 02 04 05

Example 1: National Longitudinal Cohort of Hematological Diseases in China (NICHE)

A flexible setup to enhance data velocity and mechanize information integration

A prospective longitudinal multi-disease hematology cohort in China

Data velocity: Integrate and streamline data firehoses

Capture, filter, and process high-volume RWD at a near-constant rate

Abbreviations: eCRF, electronic case report form; EMR, electronic medical records; HIS, hospital information system; HRU, health resource utilization; LIS, lab information system; MRD, minimal residual disease; 12 NGS, next generation sequencing; R/R, relapsed and refractory

An example of mock data from one patient: Massive raw records

Transform historical raw data into a complete picture of the patient journey

🔺 CR 🔺 NR 🔺 REF

RLP

Example: Mock data from one patient

Generates research-grade dataset to support analytics

100 -0.8 75 -Proportion of patients (%) 0.6 50 25 -0.2 0 -0 1st Induction 1st Consolidation 2nd Induction 2nd Consolidation OS (Years) Treatment types

Sankey diagram of treatment sequences among patients with newly diagnosed AML

Treatment pattern analysis

Time to event analysis

Risk prediction

Example 2: Acute Myeloid Leukemia (AML) Real World EvidenCe (ARC) Initiative

Innovative solutions to unify data standards with transparency and traceability

AML Real world evidenCe (ARC) Initiative

A pioneer international longitudinal multicenter study engaging top-tier academic sites

ML-based data process pipeline to unify data standards and definitions

Improve the consistency, transparency, and traceability of RWD across hospitals in China

Data transparency: The "Necker cube illusion"

Inconsistent interpretation depending on focus and perspective

How do you define refractory acute myeloid leukemia (AML)?

Will it simplify the issue when we have access to clinical facts?

Data traceability: The infinite learning loop in an evolving field

Enables systematic updates and adjustment to reflect new knowledge and consensus

References:

National Longitudinal Cohort of Hematological Diseases, ClinicalTrials.gov, NCT04645199

Gong B, et al., Evaluating treatment patterns and outcomes for acute myeloid leukemia in adult patients in China - methodology considerations of RWE, Ninth Southern China Annual Congress on Pharmacoeconomics, 2021

Dynamic disease models: From data to insights

Opportunities and future directions of ML applications in RWE

Part II – Finding Order in the Chaos: Ensuring Data Relevance and Validity Using Machine Learning Tools

Xiaochen Zhang, M.S. Project Director Beijing Huashu Yihui Technology Co.

Nov 6–9, 2022 Vienna, Austria

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS

Huge amount of RWD Prescription EMR MEDIUM MEDIUM 1,512,000 1,785,000 Visits 270,000 **Procedure** LIS Claims 455,000 HIGH HIGH Low Low 1,194,000 17,847,000 SPEED SPEED Prescription HIS **EMR** Claims claims LIS Procedure LIS Proce dure

Problems with RWD: Complex preprocessing for multiple centers

How do we ensure efficient integration of multi-source heterogeneous data?

What do we need? To transform raw records into a complete picture of the patient journey

Example: Mock data from one patient

Abbreviations: AE, adverse event; BM, bone marrow; CR, complete remission; NR, no remission; REF, refractory; RLP, relapse; SCT, stem cell transplantation. References:

AML response criteria - CIBMTR forms instruction manual. https://www.cibmtr.org/manuals/fim/1/en/topic/aml-response-criteria

Ma, J. 中国复发难治性急性髓系白血病诊疗指南(2021年版).中华血液学杂志2021年8月第42卷第8期 Chinese Journal of Hematology, August 2021, Vol. 42, No. 8

Benfa Gong, et.al. Evaluating treatment patterns and outcomes for acute myeloid leukemia in adult patients in China - methodology considerations of RWE, Ninth Southern China Annual Congress on Pharmacoeconomics

Valuable info from algorithm

An empirical solution with challenges: NLP in healthcare research Example: Mock physician chart from one patient

Our approach: Knowledge dictionary + algorithm mode

Knowledge dictionary	Core algorithm	Data-driven findings
 Cover multiple blood diseases Drug, procedure, lab tests, gene, etc. Continuous iteration 	 Localized algorithm Solve scientific research problems, such as treatment line division Continuous iteration 	 Rely on a large amount of high-quality data Use ML to self-learn Instant feedbacks to the algorithm
Name_cnName_en阿糖胞苷cytarabine阿扎胞苷azacitidine高三尖杉酯碱Homoharringtonine	2. 含中剂量 Ara-C的诱导治疗方案:高三尖杉 酯碱(HHT)2 mg·m ⁻² ·d ⁻¹ ×7 d, DNR 40 mg·m ⁻² ·d ⁻¹ × 3 d Ara-C前4 d 为 100 mg·m ⁻² ·d ⁻¹ ,第 5、6、7 天为 1 g·m ⁻² ·12 h ^{-1[9,14]} (证据等级 1a)。	patient_id regimen_cn regimen_en pd1 阿扎胞苷,阿糖胞苷,高三尖杉酯碱 HHT+Ara-C+AZA pd2 阿扎胞苷,阿糖胞苷,高三尖杉酯碱 HHT+Ara-C+AZA pd3 阿扎胞苷,阿糖胞苷,高三尖杉酯碱 HHT+Ara-C+AZA pd4 阿扎胞苷,阿糖胞苷,高三尖杉酯碱 HHT+Ara-C+AZA pd5 阿扎胞苷,阿糖胞苷,高三尖杉酯碱 HHT+Ara-C+AZA
HHT, AZA, Ara-C	HHT + Ara-C	HHT + Ara-C + AZA

Abbreviations: Ara-C, cytarabine; AZA, azacitidine; HHT, homoharringtonine

The outcomes: Algorithm performance

Example: Regimen algorithm of AML patients

What did we achieve? Algorithm outputs

	Our Algorithm	Others
WHO classification	~	×
FAB classification	✓	×
Risk stratification	✓	×
Treatment regimens in each treatment approach	✓	×
Treatment regimens in each treatment line	✓	×
Best response	✓	×
Relapse or primary refractory	✓	×
Transfusion independence	✓	×
Event-free survival	✓	×

Q

Objective

- Focus more on objective values, such as lab results, etc.
- Better data governance

Reproducible

- Based on clinically relevant rules
- Better interpretability
- Better traceability

Flexible

- Remains flexible to accommodate varying parameters
- Flexible to add additional findings or tease out old markers

Our dynamic disease models are implemented in a variety of hematological conditions

Leukemia

32,000+

Acute myeloid leukemia, AML Acute lymphoblastic leukemia, ALL Chronic myeloid leukemia, CML

Coagulation disorders

4,000+

Hemophilia Von Willebrand disease, VWD Immune thrombocytopenia, ITP

Myeloproliferative disease 10,200+

Myelodysplastic syndrome, MDS Myeloproliferative neoplasm, MPN

Polycythemia vera, PV Primary myelofibrosis, PMF Primary thrombocytosis, ET

Part III – Machine Learning and RWE in HEOR

Tools for transparency and interpretability

Max Leroux, M.Sc. Director of Data Science Analysis Group Email: maxime.leroux@analysisgroup.com

Nov 6–9, 2022 Vienna, Austria

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC BEIJING BRUSSELS LONDON MONTREAL PARIS

Problem Setting

- HEOR problems rely heavily on linear models (highly interpretable)
- However, to increase prediction accuracy, more complex models are needed often at the cost of lower interpretability.

Objective

Improve our understanding of complex models using state-of-the-art interpretability methods

Rationale for model interpretability in HEOR

GLM-based vs. machine learning-based models in HEOR

Traditionally used regression-based models in HEOR were transparent and interpretable

- Examples of models used in HEOR include GLM regression-based models:
 - linear regression for resources utilization
 - logistic regression for probabilities
 - Poisson regression for incidence rate

Interpretation through odds ratios, marginal effects

- These regression-based models all share the same structure : $E(Y|X) = \mu = g^{-1}(X\beta)$
- The results are usually transparent and interpretable:
 - marginal effects (b)
 - odds ratios (eb)
 - incidence rate ratio (eb)

Machine learning is more commonly used in HEOR

Along with RWE, machine learning tools are commonly used in HEOR

Recent publications using machine learning models in HEOR

- Early Predictors of Sjögren's Syndrome: A Machine Learning Approach, with J. Signorovitch, I. Pivneva, W. Huber and G. Capkun, Value in Health Vol. 22, Supp. 2 (2019)
- Predicting clinical remission of chronic urticaria using random survival forests: machine learning applied, with I. Pivneva, M-M. Balp, Y. Geissbühler, T. Severin, S. Smeets, J. Signorovitch, Y. Liang, T. Cornwall, J. Pan, A. Danyliv, S.J. McKenna, A. Marsland A and W. Soong, *Dermatology and Therapy* (forthcoming)
- Development and evaluation of a predictive algorithm for unsatisfactory response among patients with pulmonary arterial hypertension using health insurance claims data, with M. Gauthier-Loiselle, Y. Tsang, P. Lefebvre, P. Agron, K.B. Lynum, L. Bennett and S. Panjabi, Current Medical Research and Opinion, Vol. 38 (2022)
- Development of a Multivariable Proxy Model for Six-Minute Walk Distance (6MWD) in Duchenne Muscular Dystrophy (DMD) Using Machine Learning Methods, with N. Done, J. Iff, J. Signorovitch, D. Bertsimas, E. Henricson and G. McDonald, Neurology, Vol. 94 (2020)

Depending on the problem at hand and data used, different strategies have been used to make these models interpretable

- Parsimonious tree-based approach
- Most important predictors used in a logistic model
- Limited set of predictor used in a more narrowly defined model

Need for a unified framework

How can we make machine learning models more transparent and interpretable?

The solutions outlined work well

- In a specific context or within a specific problem set, simpler approaches can increase transparency and interpretably
- However, this case-by-case approach can be generalized through a unified approach

In the reminder of the presentation, we will focus of methodologies used to improve transparency and interpretability

Section 1: Interpretability methods

Section 2: Case study

Section 3: Final thoughts

Section 1: ML interpretability methods

Methods categorization

Interpretability methods can be thought of as either model-specific or model-agnostic.

- Model-specific: Interpretation methods that are *derived from the properties* of a model are said to be model-specific. The interpretation of *intrinsically interpretable models* like linear regression, logistic regression, GLM, and decision trees is always model-specific.
- Model-agnostic: Interpretation methods that can be applied post-hoc, regardless of the structure of the underlying model are said to be model-agnostic. They therefore work well with non-linear models (e.g., random forests, neural networks, etc.)

Interpretability methods can further be broken down into global or local.

- Global interpretability methods describe the distribution of the target variable based on the set of features. They inform on the
 marginal contribution of a feature across all possible coalitions (i.e., the entire model). Some examples include the importance of the
 feature or the directionality of the effect.
- Local interpretability methods describe each single instance's prediction individually. They inform on the relative effect of each feature in the particular prediction. This is especially useful for interpretability of inference.

Section 1: ML interpretability methods

Model-agnostic methods

Method	Global and/or local	Regression (e.g., RU)	Classification (e.g., probabilities, incidence)	Categorical covariates	Numerical covariates
Feature importance	global	\checkmark	\checkmark	\checkmark	\checkmark
Partial dependence plots (PDP)	global	\checkmark	\checkmark	\checkmark	\checkmark
Accumulated local effects	global	\checkmark	\checkmark	\checkmark	\checkmark
Global surrogate	global	\checkmark	\checkmark	\checkmark	\checkmark
Shapley values	global & local	\checkmark	\checkmark	\checkmark	\checkmark
Local interpretable model-agnostic explanations (LIME)	global & local	\checkmark	\checkmark	\checkmark	\checkmark

Section 2: Sample case study

Context

- Objective

Build a prognostic model predicting the one-year disease progression of patients

Competing models performance

Lasso regression4.1443.2490.221Lasso regression (with interactions)3.9963.1130.294Random forest regression3.9103.0970.307	Model	Root mean squared error	Mean absolute percentage error	R²
Lasso regression (with interactions)3.9963.1130.294Random forest regression3.9103.0970.307	Lasso regression	4.144	3.249	0.221
Random forest regression3.9103.0970.307	Lasso regression (with interactions)	3.996	3.113	0.294
	Random forest regression	3.910	3.097	0.307

Data

- **Patients:** ~ 800
- Features: > 20 Features
- Outcome: Disease (index) change over one year (real number)
- Train-test ratio: 4:1

Interpretability methods used

- Partial dependence plots (main and interaction effects)
- H-statistic
- Shapley values (global and local)

Section 2: Sample case study Context

Lasso regression

with interactions

Feature	Coefficient
Intercept	9.292
Age	-2.496
Feature2	7.196
Feature3	0.000
Feature8:Feature7	0.189
Feature8:Feature8	0.000

Section 2: Sample case study

Feature importance

Feature importance shuffles each feature one at a time and measures the increase in model error as importance value of that feature.

What it does:

- Measures importance value of each feature and rank accordingly

Comparable method:

- Average decrease in impurity
 - Importance value of a feature in the trained model is calculated by taking the average of the accumulation of impurity decrease within each tree in cases of multi-model architectures.

☐ Advantage

- Easy to interpret
- Can be computed on a left-out test set

Limitations

- Correlated features can decrease the importance of the associated feature
- Need access to true outcome

Permutation Feature Importance

Section 2: Sample case study

Partial dependence plot (PDP) - main effect

PDP reduces the complex model to a simple function that depends only on 1 or 2 features by **averaging** the effects of the other **features over the marginal distribution**

- What it does:
 - Estimates first order feature effects on prediction.
 - Shows the dependence between the target and the feature(s), marginalizing over the values of all other features.
- Assumptions:
 - Features are uncorrelated

Advantage

- Easy to implement and understand
- Can be paired with ICE plot

Limitations

 Stressing one feature potentially generates unrealistic regions

Section 2: Sample case study

H-statistic

Using partial dependence (PD) decomposition, the interaction **H-statistic** shows the amount of variance (difference between observed PD and the no-interaction PD) explained by the interaction

- 0 means there is no interaction between 2 features.
- 1 means the prediction only depends on the interaction.

Interpretation:

Here, the H-statistics shows that *Feature7* has the largest interaction strength with *Age* so this pair is chosen to plot the PDP interaction effect.

H-statistics (Age with Other features)

Section 2: Sample case study

PDP plot (interaction effect)

Interpretation:

- PDP does not show obvious interaction pattern between *Age* and *Feature7*. The prediction is influenced mostly by Age value.
 - When Age is below ~7, the predictions are above -2 on average no matter what *Feature7* value is.
 - When Age is above ~7, the predictions are below -2 on average.

Potential usage:

- It assists in understanding the pattern in the interaction effect between two features.
- It helps to identify the features that are low in main effect but contribute a lot when they combine with another feature.

PDP Interaction and Main Effect between Age and feature7

Section 2: Sample case study

Shapley values (global)

SHAP tries to fairly distribute payouts among the features to get the marginal contribution of a feature to the prediction.

What it does:

- Measure contribution of each feature in predicting one observation
- Rank features by their average contribution to predictions

Intuition:

- Inspired by a method from coalitional game theory that can fairly distribute the payout among players.
- Assume that predicting the outcome of an observation is a game, where each feature is a player, and the prediction outcome is the payout.

Advantage

- Solid theoretical foundation
- Difference between prediction and average prediction is fairly distributed among features

Limitations

- Computationally expensive
- Need access to data
- Suffer from unrealistic data instance

Section 2: Sample case study

Shapley values (local)

- Interpretation:
 - The actual prediction value is -2.2 compared to the average prediction value -2.85.
 - Feature2 marginally contributes 0.94 to the prediction on average.
 - Contribution of a feature is like beta*value in linear regression

Feature	Value	Contribution	Current value
[start]	-	-2.85	-2.85
feature2	0.368	0.94	= -2.85 +0.94 = -1.91
feature3	2.646	0.62	= -1.91 +0.62 = -1.29
feature8	0.0	-0.22	= -1.49 - 0.22 = -1.73
Age	12.137	-0.47	= -1.73 - 0.47 = -2.2

Actual Prediction: -2.2 Average Prediction: -2.85

1.0

Section 3: Final thoughts

- There exist many more methods for ML model interpretability
- Statistical significance of effects can also be tested with more advanced methods
- Packages are available in most languages (R, Python, etc.)

Thank you

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC BEIJING BRUSSELS LONDON MONTREAL PARIS

Did you find the content of this session helpful?
o Yes
o No

Did the content of this presentation relate to your own work?

∘ Yes

• **No**

Which topic would you like to learn more about?

- $\circ~$ Solutions to advance multi-center studies in China
- National Longitudinal Cohort of Hematological Diseases in China (NICHE)
- Applications of ML-powered dynamic disease models on existing data
- Available data resources in China (e.g., HSAS)
- o Interpretability of machine learning
- \circ None of those

Would you be interested in collaborating with us on one of the following research topics?

- o Solutions to advance multi-center studies in China
- National Longitudinal Cohort of Hematological Diseases in China (NICHE)
- Applications of ML-powered dynamic disease models on existing data
- Available data resources in China (e.g., HSAS)
- \circ Interpretability of machine learning
- \circ None of those