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Inclusion criteria were patients with MI or suspected-MI, risk-factor
prediction and published as full manuscripts.
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Exclusion criteria were population other than MI or mixed Unspecified BRLK. Supervised

population, outcomes other than risk prediction, conference
abstracts and non-English articles.
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A total of 1755 studies were identified, of which 38 full texts were kNN I 2
included for analysis (Fig. 1). 0
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Included studies comprised of patients with Ml or suspected-Ml *33 studies reported 109 supervised learning methods calise
aged approx. >40 vyears. Patients had several comorbidities,
commonly being hypertension, diabetes, CKD, CVD, angina and

stroke.
Table 1. Best performing Al/ML supervised learning models based on outcomes

In 15 studies (40%), patients were found to be current smokers.
Input data in most of the studies was hospital records followed by Outcomes/ Neural

registry, ECG, CMR images and OMICS (Fig. 2). Boosting Regression Network Random forest SVM Tree-based Bayesnet

supervised models

The use of Al/ML techniques was reported by nine studies (24%) and
CSMs by three (8%), whereas 26 studies (68%) reported both Al/ML CVD risk
and CSM methods.

About 87% of studies reported supervised learning method followed Non-CVD risk 0 9
by unsupervised and unspecified methods (Fig. 3).

outcome, followed by all-cause mortality, CVD-related mortality,

Risk-prediction models for CVDs was identified as the most common Mnrtallty-CVD 0 0 0
readmission, MACE, non-CVDs and hospitalization. (Fig. 4) o

Mortality-All cause © % 0O

In majority of the studies, Al/ML-based models were reported as
superior to CSMs. The best performing supervised learning methods MACE 0
were random forest, boosting, neural network (Table. 1)
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