A review of cure assumptions implemented in early-stage oncology NICE appraisals

Hancock H,¹ Brockbank J,¹ Brodtkorb TH,¹ Lucherini S,² Russell J²

¹ RTI Health Solutions, Manchester, United Kingdom; ² Bristol Myers Squibb UK, Uxbridge, United Kingdom

Background

- Clinical research in oncology is progressively moving towards earlier treatment lines and curative settings.
- In early-stage treatment settings (classified as neoadjuvant, peri-operative, and adjuvant), the potential for patients to be 'cured' can create challenges in extrapolating survival outcomes in cost-effectiveness analyses.

Objective

- To review how the modelling of cure was implemented across National Institute for Health and Care Excellence (NICE) technology appraisals (TAs) for pharmacological treatments in early-stage oncology settings.
- To consider how the external assessment groups (EAGs) and NICE appraisal committees viewed the company's approaches used for modelling cure.
- To determine the evidence required by EAGs and NICE to facilitate the most appropriate approaches for modelling cure in future appraisals.

Methods

- The NICE website was searched to identify relevant TAs published up to the end of May 2022.
- NICE appraisal documents reviewed included the company submission, EAG report, appraisal consultation(s), and final appraisal determination.
- Appraisal data extracted included:
- Indication, treatment, and setting of the TA
- Approach used for incorporating cure into the cost-effectiveness model (by company and by EAG)
- Model structure
- Company base case
- EAG critique of the company's approach
- Appraisal committee and final appraisal determination discussion on cure assumption and modelling technique

Results

- The searches yielded 8 adjuvant TAs and 1 neoadjuvant TA in different oncology indications (4 breast, 3 melanoma, 3 gastrointestinal, and 1 lung) (Figure 1).
- Of the 17 TAs identified, 0 were peri-operative, 1 was neoadjuvant, and 16 were adjuvant. After screening, 11 TAs were eligible for inclusion (1 neoadjuvant and 10 adjuvant). Of these, 3 adjuvant TAs were excluded (because they did not incorporate a cure into the model), which resulted in the inclusion of 8 TAs in the analysis (1 neoadjuvant and 7 adjuvant TAs) (Table 1).
- The TAs used either a mixture-cure method that explicitly separate cured and uncured patients ('explicitly modelled' cure; n = 1) or implicitly imposed a cure on patients through the use of assumptions ('implicitly modelled' cure; n = 7).
- Approaches used to model cure included switching from standard parametric survival models to background mortality at a timepoint when patients are clinically considered cured, using both external registry data and background mortality over different time periods, and fitting mixture-cure models that inherently separate cured and uncured patients.
- Different assumptions were made about the timing of cure and proportion of cured patients: 4 TAs modelled a time-varying cured proportion (TA424, TA544, TA569 and TA632), and the remaining 4 used a static approach.
- Model structure did not appear to influence the type or extent of EAG/NICE critical appraisal.
- Approaches used to model cure were generally accepted by the EAGs/NICE. However, additional scenario analyses were often required (e.g., altering cure fraction and timepoint parameters), with more pessimistic parameter values often preferred.

Table 1. Summary of cure-modelling approach in completed NICE technology appraisals for early-stage oncology

Intervention	Model structure	Cure timepoint/ proportion	Cure approach	EAG/NICE appraisal
Dabrafenib + trametinib in adjuvant melanoma (TA544)	Cohort state- transition model with 4 mutually exclusive health states	The base case included a cure: the mixture-cure model was applied for the first 50 months	Explicit cure modelled: Mixture-cure model during trial period, followed by external data and adjusted for general population mortality	Cure modelling considered appropriate Disagreed with cure proportion
Nivolumab in the adjuvant gastrointestinal setting (TA746)	Semi-Markov model structure with 3 health states	The base case included a cure from year 3	Implicit cure modelled: Cure assumed at specific timepoint ^a	 Cure modelling considered appropriate Disagreed with cure timepoint (wanted a complete plateau of KM data before a cure was assumed) Would have liked to see an analysis which assessed whether the mortality rate of cured patients is equal to that of the general population
Pertuzumab in the adjuvant breast setting (TA569)	Markov model structure with 7 health states	The base case included a cure from year 3 for a proportion of patients that increased up to year 10	Implicit cure modelled: Cure assumed at specific timepoint ^a	 Cure modelling considered appropriate Disagreed with cure timepoint Disagreed with cure proportion
Trastuzumab emtansine in the adjuvant breast setting (TA632)	Markov model structure with 7 health states	The base case included a cure from year 3 for a percentage of patients	Implicit cure modelled: Cure assumed at specific timepoint ^a	 Cure modelling considered appropriate Agreed with cure timepoint Conducted scenario analyses removing the cure assumption
Osimertinib in the adjuvant lung setting (TA761)	Markov state- transition model with 5 health states	The base case included a cure from year 5	Implicit cure modelled: Cure assumed at specific timepoint ^a	 Agreed that modelling a cure was appropriate and accepted the timepoint Disagreed with cure approach and would have preferred a formal statistical modelling of a cure (e.g., a mixture-cure model)
Pertuzumab in the neoadjuvant breast setting (TA424)	Markov model with 6 health states	The base case included a cure from year 7	Implicit cure modelled: Cure assumed at specific timepoint ^a	 Cure modelling considered appropriate Agreed with cure timepoint Conducted scenario analyses using a decreasing risk of recurrence rather than a cure
Nivolumab in the adjuvant melanoma setting (TA684)	A partitioned survival model and a state-transition model were used	The base case included a cure from year 10	Implicit cure modelled: Cure assumed at specific timepoint ^a	 Did not explicitly disagree with a cure approach being used but raised concerns about the data used Requested more appropriate methodology to model a cure
Capecitabine + oxaliplatin in the adjuvant gastrointestinal	A partitioned survival model and a state-transition model were used	The base case included a cure at year 5	Implicit cure modelled: Cure assumed at specific timepoint ^a	No relevant critique provided with regards to a cure approach

Figure 1. Study identification

Conclusions

- Overall, the clinical rationale and implementation of cure in early oncology economic models was seen as reasonable by both the EAG and the NICE committee.
- However, the timepoint for when cure could be assumed to occur and the proportion cured were refuted in most appraisals.
- Timepoint of cure and proportion cured are key areas of uncertainty that additional research may be able to help resolve.
- The results of this review can be used to inform companies on the preferred NICE/EAG cure assumption methodologies and the typical challenges that cure assumptions may generate.

Acknowledgments

This study was supported by Bristol Myers Squibb.

Contact Information

Hannah Hancock, MSc RTI Health Solutions Email: hhancock@rti.org

KM = Kaplan Meier.

a Those remaining in the disease-free health state beyond the stated timepoint were modelled with the same mortality risk as the general population.