

argenx Evidence Gap Analysis of the Burden of Illness and **Treatment of Primary Immune Thrombocytopenia**

Yang J,¹ Masaquel C,² Arvin-Berod C,³ Phillips G,⁴ Godar M,³ Desai M,⁴ Ayguasanosa J³

¹RTI Health Solutions, Research Triangle Park, NC, United States; ²RTI Health Solutions, Ann Arbor, MI, United States;

³ argenx BV, Gent, Belgium; ⁴ argenx US Inc., Boston, MA, United States

Background

- Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by isolated thrombocytopenia (platelet count < 100×10^9 /L) in the absence of other causes of thrombocytopenia.1
- Most patients present with various bleeding signs.^{2,3} Debilitating fatigue is a common symptom, reported in up to 61% of patients as an important issue and identified in clinical trials as among the worst items at baseline evaluation.4
- Immunoglobulin G autoantibodies are directly pathogenic in primary ITP. Efgartigimod is engineered for optimal blocking of FcRn, which is central to immunoglobulin G regulation.

Objective

■ To identify evidence gaps in the literature on the burden of illness and treatment of adult primary ITP to support the launch of efgartigimod.

Methods

- A targeted literature review was conducted from 1 July 2011 to 26 October 2021 in PubMed, Embase, and the Cochrane Library using a predefined search strategy.
- Articles on disease description; epidemiology; clinical, humanistic, and economic burden; and treatment patterns were included.

Results

Gaps in Epidemiology

Identified evidence • ITP is a rare disease.

- Incidence in adults ranges 1.6-5.3 per 100,000 people per year.2
- Prevalence varied considerably depending on studies⁵ and ranges from 17 to ~50 per 100,000 persons.6-8
- Mortality risk in patients with ITP is higher compared with the general population.⁵
- Mortality rates are particularly high among patients who are refractory to treatment,9 patients who have experienced cardiovascular or bleeding events, 10,a older patients, and hospitalized patients.11

Evidence gaps

- Robust epidemiology studies with large sample sizes are lacking; evidence is mostly based on review articles and a few dated studies (up to 2015).
- No data are available on the number of patients in secondand third-line treatment settings.
- Some epidemiology estimates included mixed populations,^b leading to inaccurate estimation.
- There is limited information on the mortality rate. Studies mostly focused on subgroups of patients, such as hospitalized patients or those who experienced cardiovascular or bleeding events.a
- ^a Bleeding event requiring hospital contact.
- ^b Mixed populations of adult and pediatric patients, different disease stages, or other types of thrombocytopenia.

Clinical Burden

Identified evidence

- Bleeding events occur frequently in patients with ITP.
- The overall rate of bleedingrelated episodes was 1.72 per patient-year (95% CI, 1.68-1.75), with rates higher during the first 3 months after ITP onset.¹²
- Predictors of severe bleeding include newly diagnosed ITP, severe thrombocytopenia,^a and previous minor bleeding.13
- Fatigue is a common morbidity as up to 61% of patients reported it being an important issue.4
- ITP can also be associated with other clinical manifestations, including thromboembolism events,^b infection, and bone marrow fibrosis.^{2,14-18}

Evidence gaps

- Predictive factors^c for the relevant clinical burden are not well studied.
- There is a lack of data on when the clinical manifestations occur, particularly regarding disease stage or disease duration.
- Most studies focused on rates but lack data on severity of manifestations.
- It is not clear how disease severity or platelet count level are associated with the various clinical manifestations.
- Fatigue is the only clinical symptom evaluated for its effects on HRQOL. The effects of other clinical symptoms on humanistic and/or economic burden are not assessed.
- Clinical manifestations of ITP have not been well assessed as an efficacy outcome in clinical studies.
- CI = confidence interval; HRQOL = health-related quality of life.
- ^a Severe thrombocytopenia was defined as platelet count < 10 × 10⁹/L or $< 20 \times 10^9$ /L, depending on different articles cited in the review.
- ^b Thromboembolism events include venous thromboembolism, ischemic stroke, or TIA
- (transient ischemic attack) in different studies. c Associations with either an increased or a reduced risk.

Humanistic Burden

Identified evidence

- ITP has a significant and negative effect on various aspects of HRQOL in patients, both with and without interventions.19
- More than 60% of patients reported ITP having a negative effect on functioning, with energy level and ability to exercise being the most affected areas. Nearly half of patients felt that ITP negatively affected their psychological and emotional well-being, with concerns about worsened condition and platelet counts being the most affected issues.20
- Fatigue has a significant effect on a considerable proportion of patients (range, 12.5%-61%) and has been assessed separately from the general HRQOL evaluation.^{4,20} Patients with persistent ITP had the worst fatigue in all measured dimensions in fatigue instruments, and the severity of fatigue correlated with worsened HRQOL outcomes.21

Evidence gaps

- Despite evidence that patients with ITP have significant impairment in HRQOL, recent data on humanistic burden are limited.
- Most studies on HRQOL used the generic SF-36 instrument.
- The disease-specific instrument ITP-PAQ has been used only in studies with romiplostim.
- Fatigue is considered a significant morbidity of ITP. However, current literature lacks robust analysis on fatigue, both in terms of a standardized definition and well-accepted/ validated measurement.
- Most humanistic burden studies were cross-sectional. Given that ITP is a chronic disease, robust longitudinal analysis is needed.
- No data are available on the factors that are associated with or predict impaired HRQOL
- No study assessed caregiver burden.
- Utility data are limited to 1 study in Italy and 1 multinational survey.

ITP-PAQ = Immune Thrombocytopenia Patient Assessment Questionnaire.

Economic Burden

Identified evidence

- 4 studies analyzed direct costs and HCRU in patients with ITP; all studies showed significant medical costs and hospital utilization due to ITP. 6,8,11,22
- Costs of bleeding were specifically evaluated and shown to be significant. 23,24
- Patients with ITP reported significantly reduced productivity, particularly among those with high symptom burden and those aged 18-49 years.²⁰

Evidence gaps

- Analyses of HCRU and costs were mostly based on a 12-month follow-up period; therefore, data on the longterm economic burden of chronic ITP are lacking.
- Data from the I-WISh survey mainly include patients with chronic ITP²⁰; therefore, it is not clear how ITP affects productivity and employment status during the early phases of ITP.
- No articles assessed loss of productivity among caregivers of patients with ITP.
- Most studies were US-focused analyses. Therefore, data are scarce in other countries.

HCRU = healthcare resource utilization; I-WISh = ITP World Impact Survey;

Current Treatment Landscape and Treatment Patterns

Treatment for ITP

First-line options

- Corticosteroids: only effective in the initial few days in 85% of cases; frequent relapses reported after discontinuation.²⁵
- IVIG: 1-3 days for initial response and 2-7 days for peak response²⁶; associated with various side effects, including an increased risk of thrombosis.²⁷
- Anti-D immunoglobulin: not approved as a licensed treatment of ITP in some countries.27

Second- and third-line options

- approved for chronic and refractory ITP; associated with various side effects and/or administration restrictions. 27-29 Avatrombopag was recently approved and, unlike eltrombopag, has no food restriction or hepatotoxicity. 28,29
- Immunomodulators: rituximab is used in the second line. Fostamatinib is approved to ITP and is used in the third-line setting.²⁷
- Splenectomy: reserved for refractory and chronic ITP; challenging to predict patient response and associated with

Evidence gaps

- Treating ITP is challenging; current available treatments have limitations and are
- associated with various risks and complications. Data for therapies beyond the second line are limited; there is no clear treatment paradigm,

with patients switching from

one therapy to another.

- TPO-RAs: widely used and
- although not approved for ITP.25 treat only chronic and refractory
- various risks and complications. 25,27

Treatment patterns

- Across different studies, treatment patterns were similar in the first line, with corticosteroids being the most commonly used treatment.
- Variation exists across different studies in the second-line setting.
- **Evidence gaps**
- Data on treatment patterns are mainly based on studies in the US and a few European countries.

IVIG = intravenous immunoglobulin; TPO-RA = thrombopoietin receptor agonist.

Conclusions

Data on ITP are not all consistent or up to date. Uncertainty about treatment response and a lack of effective treatment remain unmet needs for patients with ITP; efgartigimod has the potential to offer a new treatment for patients with ITP. Several gaps have been identified, and closure of these gaps could help support the launch of efgartigimod in ITP.

Disclosures

Clémence Arvin-Berod, Glenn Phillips, Marie Godar, and Jaume Ayguasanosa are employees of argenx. Mehul Desai is a former employee of argenx. Jin Yang and Catherine Masaquel are employees of RTI Health Solutions.

Funding

argenx provided funding to RTI Health Solutions to conduct this study and was involved in reviewing this poster.

Contact Information

Jin Yang, PhD **RTI Health Solutions**

Phone: +1.919.541.7019 Email: jyang@rti.org

References

- 1. Kistangari G, et al. Hematol Oncol Clin North Am. 2013;27(3):495-520.
- 2. Singh A, et al. J Clin Med. 2021;10(4):1-21.
- **3.** Provan D, et al. Adv Ther. 2015;32(10):875-87. 4. Hill QA, et al. Br J Haematol. 2015;170(2):141-9.
- 5. Frederiksen H, et al. Expert Rev Hematol. 2012;5(2):219-28. 6. Saleh MN, et al. Curr Med Res Opin. 2009;25(12):2961-9.
- 7. Bennett D, et al. Adv Ther. 2011;28(12):1096-104.
- 8. Liang Y, et al. Curr Med Res Opin. 2021;37(8):1315-22.
- 9. Orphanet. Immune thrombocytopenia. 2021. Available at: https://www.orpha.net/consor/cgi-bin/OC_Exp. php?lng=en&Expert=3002. Accessed 6 January 2021.
- **10.** Adelborg K, et al. J Thromb Haemost. 2019;17(6):912-24. 11. An R, et al. Vasc Health Risk Manag. 2017;13:15-21.
- **12.** Li S, et al. Curr Med Res Opin. 2018;34(2):209-16.
- 13. Neunert C, et al. J Thromb Haemost. 2015;13(8):1522-3.
- **14.** Sandvad M, et al. Expert Rev Hematol. 2021;14(10):961-74. 15. Doobaree IU, et al. Eur J Haematol. 2016;97(4):321-30.
- 16. Ekstrand C, et al. Thromb Res. 2019;178:124-31. 17. Pan L, et al. Neurol Sci. 2021;42(5):2013-20.
- 18. Rizvi H, et al. Br J Haematol. 2015;169(4):590-4. 19. Sestøl HG, et al. Expert Rev Hematol. 2018;11(12):975-85.
- 20. Cooper N, et al. Am J Hematol. 2021;96(2):199-207.
- 21. Efficace F, et al. Am J Hematol. 2016;91(10):995-1001.
- 22. Weycker D, et al. J Med Econ. 2020;23(2):184-92. 23. Lin J, et al. Clin Ther. 2017;39(3):603-9 e1.
- 24. Pogna E, et al. Value Health. 2021;24:S203. **25.** Audia S, et al. Hemasphere. 2021;5(6):e574.
- **26.** Khan AM, et al. P T. 2017;42(12):756-63. 27. Althaus K, et al. Hamostaseologie. 2021;41(4):275-82.
- 28. Cheloff AZ, et al. J Blood Med. 2019;10:313-21. 29. Markham A. Drugs. 2021;81(16):1905-13.