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Survival modelling in HTA .

¢ Development of innovative (anti-cancer) drugs

— Clinical delayed effects
— Possible long term survivors

® Problem: Heavy Censoring due to limited follow-up

¢ Objective: provide credible estimate of survival extrapolation

— new method: “blending” survival curves

e Example: CLL-8 Trial data
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Limited RCT data

Kaplan-Meier Survival Estimates
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Extrapolation: parametric models?
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Extrapolation: parametric models?

Extrapolating the survival curve beyond the Follow-up
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Long-term behaviour .

Using external information:

e External data: registries, cancer cohort

® |Long-term dataset
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Long-term behaviour .

Using external information:

e External data: registries, cancer cohort

® |Long-term dataset
At 10 years what is the
plausible range of survival
probabilities for Treatment
X?

¢ Elicited beliefs: expert opinion/knowledge

® 5/10-y survival probability

* Mortality for disease-related causes...

We consider a parametric model encoding assumptions on the expected long-term
behaviour.
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Incorporating external information
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Observed data

1.00-
075-

©
2 model
= 050
(?7 Kaplan-Meier

0.25-
0.00-

0 5 10 15 20
Time since randomisation (years)

8/20



Observed data
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Blended curves
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Blended curves
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Blended curves
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Weight function
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Weight function
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Blended hazards?
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So this is like mixture cure model?...

Actually, no...
e Mixture Cure Model

— considers two components (“cured” vs “non-cured”)
— components mixed up with constant weights
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So this is like mixture cure model?... .

Actually, no...

e Mixture Cure Model

— considers two components (“cured” vs “non-cured”)
— components mixed up with constant weights

¢ Poly-hazard

— Assumes that there are “competing risks” for the event
— Overall hazard = sum of competing/contributing hazards

* Blended model

— Similar to MCM BUT: weights change over time
— Similar to poly-hazard: component-wise hazards sumed (using weighted average,
determined by time-specific weights)
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Uncertainty: external information

® Constraints to survival curve extrapolation

© S(10/9) ~ 0.1

® S(5/0) ~ 0.4, S(10/0) ~ 0.1
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Shiny app

Modelling Assumptions
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Summary .

Advantages

e Overcomes the overly-optimistic constant treatment effect
¢ Sufficient flexibility with various plausible scenarios
® | ess concerned about model selection

Limitations

¢ Elicited belief: probably a weak form of evidence, need long-term data

® Does not (yet) account for other kind of external knowledge...
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Conclusion N

® Less mature data create a big challenge for survival extrapolation

—though many good techniques can characterise realistic hazard functions
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Conclusion N

® Less mature data create a big challenge for survival extrapolation

—though many good techniques can characterise realistic hazard functions
¢ Possible solution — Bayesian framework for eliciting beliefs

¢ Blended curve is a simple and not computationally intensive method

— to incorporate clinical opinion for long-term survival

¢ The method considers a wide range of plausible scenarios

—the lack of data causes the uncertainty
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