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Survival modelling in HTA

• Development of innovative (anti-cancer) drugs

– Clinical delayed effects
– Possible long term survivors

• Problem: Heavy Censoring due to limited follow-up

• Objective: provide credible estimate of survival extrapolation

– new method: “blending” survival curves

• Example: CLL-8 Trial data
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Limited RCT data

National Institute for Health and Clinical Excellence. Rituximab for the first line treatment of chronic lymphocytic leukaemia. Available from: http://guidance.nice.org.uk/TA174
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Extrapolation: parametric models?
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Long-term behaviour

Using external information:

• External data: registries, cancer cohort

• Long-term dataset

• Elicited beliefs: expert opinion/knowledge

• 5/10-y survival probability

• Mortality for disease-related causes...

We consider a parametric model encoding assumptions on the expected long-term
behaviour.
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Incorporating external information
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Observed data
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Observed data

Martino, S., Akerkar, R., Rue, H. (2011). Approximate Bayesian Inference for Survival Models. Scandinavian Journal of Statistics, 38(3), 514–528 9/20

https://www.jstor.org/stable/23015578


Blended curves
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Blended curves
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Blended curves

log Sble = (1 − p) · log Sobs + p · log Sext

Castro-Camilo, D., Huser, R. and Rue, H., 2021. Practical strategies for GEV-based regression models for extremes. 9/20

https://arxiv.org/pdf/2106.13110.pdf


Weight function

log Sble = (1 − p) · log Sobs + p · log Sext p = Pr(T⩽ t−a
b−a |α,β)

Castro-Camilo, D., Huser, R. and Rue, H., 2021. Practical strategies for GEV-based regression models for extremes. 10/20
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Weight function
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Blended hazards?
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So this is like mixture cure model?...

Actually, no...

• Mixture Cure Model
– considers two components (“cured” vs “non-cured”)
– components mixed up with constant weights

• Poly-hazard
– Assumes that there are “competing risks” for the event
– Overall hazard = sum of competing/contributing hazards

• Blended model
– Similar to MCM BUT: weights change over time
– Similar to poly-hazard: component-wise hazards sumed (using weighted average,
determined by time-specific weights)
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Uncertainty: external information

• Constraints to survival curve extrapolation

1 S(10|θ) ≈ 0.1

2 S(5|θ) ≈ 0.4, S(10|θ) ≈ 0.1
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Shiny app
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Summary

Advantages

• Overcomes the overly-optimistic constant treatment effect

• Sufficient flexibility with various plausible scenarios

• Less concerned about model selection

Limitations

• Elicited belief: probably a weak form of evidence, need long-term data

• Does not (yet) account for other kind of external knowledge...
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Conclusion

• Less mature data create a big challenge for survival extrapolation

– though many good techniques can characterise realistic hazard functions

• Possible solution – Bayesian framework for eliciting beliefs

• Blended curve is a simple and not computationally intensive method

– to incorporate clinical opinion for long-term survival

• The method considers a wide range of plausible scenarios

– the lack of data causes the uncertainty
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