

Analysis of Treatment Sequences across Seven Immunological Diseases and the Variability in Efficacy for Patients per Disease: Opportunities for Improvement

Background

• The full landscape of immune-mediated disorders includes gastrointestinal, dermatological and rheumatological diseases. Patients with these chronic conditions require treatment for prolonged periods of their life and finding effective treatments during the course of their disease can be challenging.

• Whilst multiple new and effective treatment options have become available, uncertainty remains around which treatment should be used first and the optimal order of treatments. Patients often cycle between treatments with the same mechanism of action or start with less effective treatment despite the many advanced options available.

• We developed a model to facilitate decision making regarding likely optimal sequences of treatment to find solutions for this clear and recurring unmet need for patients with immune-mediated diseases.

<u>Objective</u>: To evaluate treatment sequences and to quantify and compare variability in efficacy across seven immunemediated diseases.

Methods

Model structure

• A state transition model was developed to assess efficacy of Assumed same as AS treatment sequences in seven immune-mediated diseases: Crohn's disease (CD), ulcerative colitis (UC), plaque psoriasis (PsO), psoriatic • Each treatment sequence included up to three biologic arthritis (PsA), rheumatoid arthritis (RA), ankylosing spondylitis (AS) treatments and one blended biologic line, followed by best and non-radiographical axial spondylarthritis (NR-AxSpA). supportive care (Table 2).

• In accordance with previous modelling in immunology, each treatment line is defined by two treatment phases: induction and maintenance. For treatments that do not utilise an induction period, the maintenance phase starts from initiation of treatment. All treatments with a European Medicines Agency (EMA) marketing authorisation at the end of 2020 were included.

Data inputs and assumptions

• As precise treatment sequencing data are unavailable for these diseases, network meta-analysis informed by trial data was used for the induction and start of the maintenance phase and long-term persistency data informed by published real-world evidence studies were used for the long-term maintenance phase. An overview of comparative evidence used is presented in **Table 1**.

• Efficacy was differentiated between biologic-naïve and biologicexperienced populations. Whenever possible, Kaplan-Meier curves used to model long-term persistency were distinguished between disease areas and treatments.

 Response measures were disease-specific and selected on quality and most frequent availability of data.

• Efficacy variability was calculated as the difference in average number of treatment failures per patient between the best treatment sequence and the worst

Jennifer H. Boer¹, Fareen Hassan², <u>Sarah Alulis³</u>, Jennifer Lee³, Dawn Lee⁴ ¹BresMed, Utrecht, The Netherlands; ²Janssen-Cilag Ltd, High Wycombe, Buckinghamshire, United Kingdom; ³Janssen-Cilag A/S, Birkerød, Denmark; ⁴BresMed, Sheffield, United Kingdom

Table 1: Overview of comparative evidence used

Disease and Treatment Options	Induction and Maintenance during Trial Period				
Crohn's Disease (CD)					
Ustekinumab	Reference	UNITI-1 and UNITI-2 tria			
Adalimumab, Vedolizumab	NMA	Varu et al. (2019) ³			
Infliximab	Assumed similar to adalimumab as no data available and assumed class effect				
Ulcerative Colitis (UC)					
Ustekinumab	Reference	UNIFI trials ⁴			
Adalimumab, Vedolizumab, Tofacitinib Golimumab, Infliximab	NMA NMA, ORs for experienced vs naïve assumed same as adalimumab as no data available and assumed class effect	Welty et al. (2020) ⁶			
Psoriatic Arthritis (PsA)					
Guselkumab	Reference	DISCOVER 1 and DISCOVER 2 trials ^{7, 8}			
Abatacept, Adalimumab, Apremilast, Certolizumab, Etanercept, Golimumab, Infliximab, Ixekizumab, Secukinumab, Tofacitinib, Ustekinumab	NMA	Mease et al. ¹⁰			
Rheumatoid Arthritis (RA)					
Sarilumab Abatacept, Adalimumab, Baricitinib, Certolizumab, Etanercept, Golimumab, Infliximab, Tocilizumab, Tofacitinib	Reference NMA	MOBILITY trial ¹¹ Choy et al. ¹²			
Plaque Psoriasis (Pso)					
Guselkumab	Reference	VOYAGE 1 ¹³ and VOYAGE trials ¹⁴			
Risankizumab	Assumed same as guselkumab				
Tildrakizumab Adalimumab, Apremilast, Etanercept, Infliximab, Ixekizumab, Secukinumab Ustekinumab Brodalumab	NMA	Cameron et al. ¹⁵			
Certolizumab	Naïve comparison based on	CIMPASI-1, CIMPASI-2 a			
Ankvlosing Spondvlitis (AS)		CIMPACI			
Adalimumab, Etanercept, Golimumab, Infliximab	NMA	Chen et al. ¹⁸			
Secukinumab	NMA, OR for biologic experienced from trial	Chen et al. ¹⁸ MEASURE 2 ¹⁹			
Certolizumab	ORs from literature	EMA assessment report of Cimzia ¹⁷			
Non-Radiographic Axial Spondylarth	nritis (NR-AxSpA)				
Adalimumab, Certolizumab, Etanercept, Golimumab	NMA	NICE appraisal of golimumab (TA497) ²⁰			

• To model the final blended line, the average of the efficacy inputs (duration of the induction phase, duration of the trial period, percentage of responders and persistency curve) of all biological treatments not previously used in first, second or third line, was applied.

 Although surgery can be a viable treatment for UC and CD, we assumed it to be a rarely used option within the time horizon and therefore excluded it from the analysis. Wash-out periods between two biological treatment lines were assumed to be short enough to be negligible over the time horizon.

• Based upon these constraints, a list of all possible sequences for each disease was generated, and an estimate of their effectiveness was computed using the state transition model with a 3-year time horizon.

Table 2: Model assumptions, constraints, and number of sequences

Disease	Response Measure	Maximum instances per		Number of treatment-	Blended		Number of	
		INN	ΜΟΑ	specific lines	iiiie		sequences	
CD	CDAI-100	1	2	3	No	4	24	
UC	Clinical	1	2	3	No	6	114	
	response							
PsA	ACR20	1	2	3	Yes	12	1260	
RA	ACR70	1	2	3	Yes	10	660	
PsO	PASI90	1	2	3	Yes	12	1284	
AS	ASAS20	1	3	3	No	6	120	
NR-AxSpA	BAISDAI50	1	3	3	No	4	24	
Key: ACR, American College of Rheumatology; ASAS, Assessment in SpondyloArthritis International Society; BAISDAI, Bath Ankylosing Spondylitis Disease Activity Index; CDAI-100, Crohn's Disease Activity Index 100; INN, international non-proprietary								

A, MECHANISHI OFACION, PASI, PSOHASIS AREA AND SEVENLY IND

Results

• In **Figure 1**, the variation in efficacy between treatment sequences is displayed. The blue triangle captures average prescribing behaviour in this example country, and the green part of the bars display the room there is to reduce the number of treatment failures experienced by patients. A larger variation indicates a greater opportunity for improvement.

• For PsO, 1,284 treatment sequences were possible, and the estimated average number of treatment failures ranged from 0.58 to 2.44, translating to an efficacy variability of 1.86 failures per patient over three years. The number of possible sequences and efficacy variability for the other diseases are as follows: UC- 114 and 0.76; PsA- 660 and 0.56; RA- 660 and 0.37; CD- 24 and 0.27; AS- 120 and 0.26; NR-AxSpA- 24 and 0.25.

Figure 1: Efficacy variation across diseases

Limitations and Conclusions

• The key limitations of this analysis relate to the availability of published data. This analysis will therefore be strengthened by including real-world evidence studies that will help provide more robust data in place of some of the sequence-related efficacy assumptions.

• The model results suggest that the treatment sequences that exhibited the greatest variability in efficacy UC, and PsA, while those for RA, CD, demonstrated the least variability.

 The greatest improvement in patient outcome selection of optimal treatment sequences ma UC, and PsA given the extent of efficacy v these diseases.

 Our work suggests that providing clinicia prescribe more efficacious treatments ear therapy provides a greater opportunity to failures and therefore maximize outcomes for

were those for PsC),
, AS and NR-AxSp	A
somos from consistor	+
comes from consisten	IL
ay be achieved in PsC),
ariability observed fo	r
ans with the ability t	0
lier in the course c	of
o minimize treatmen	t
r patients.	

