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Accelerated regulatory approvals for anti-cancer therapies

— Regulatory bodies have Clinical endboi s inf o DA
implemented accelerated approval Inical endpoints approvals informing
. . . . approval from 1992-2017 2
schemes for licensing lifesaving

therapies, based on interim

El AA end points @ Initial regular approval end points
analysis or surrogate outcomes oo 100
— EMA approvals for oncology p—
treatments based on immature OS 801 801
data: .
X 60 = 604
— 19% (7 of 37) from 2009-2013 E g
— 39% (34 of 88) from 2014-20171 = *° < 40
20 20+ I
ol !_- 0- | e e
RR DFS PFS RR DFS PFS 0s Other PK/PD
S—End Point Clinical

Benefit
End Point

1. Kordecka A, et al. Selection of Endpoints in Clinical Trials: Trends in European Marketing Authorization Practice in Oncological Indications. Value Health. 2019 Aug;22(8):884-890.

Beaver JA, et al. A 25-Year Experience of US Food and Drug Administration Accelerated Approval of Malignant Hematology and Oncology Drugs and Biologics: A Review. JAMA 2
Oncol. 2018;4(6):849-856.



What does this mean for health technology assessment?

— Economic evaluation is an important part of health technology assessment (HTA)

— If new treatment impacts survival outcomes, economic evaluations often need to adopt
a life time horizon

— Thus, HTA decisions for cancer treatments often need to be based on clinical trials with
“immature” survival data — necessitating extrapolation of survival over a lifetime

— The plausibility of extrapolated portions of survival curves and the underlying
assumptions of the methods used represent a key focus for HTA reviewers due to their
potentially large impact on the uncertainty and reliability of cost-effectiveness results



Justifying model selections

A Review of Survival Analysis Methods Used
in NICE Technology Appraisals of Cancer
Treatments: Consistency, Limitations, and
Areas for Improvement

Helen Bell Gorrod

, Ben Kearns(, John Stevens, Praveen Thokala,

Alexander Labeit, Nicholas Latimer, David Tyas, and Ahmed Sowdani

ERG Critique

ERGs criticized the resulting extrapolated survival func-
tions in 41 (71%) of the 58 STAs. The ERGs identified
23 cases in which the TSD had been misinterpreted or not
followed. These included situations in which proportional
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FAD Considerations

The FAD documents provided information on the issues
of extrapolating hazard and survival functions that were
raised during the appraisal committee discussions. Issues
relating to the extrapolation of survival functions were
discussed in 41 (71%) of the 58 STAs. The main areas of
discussion were the suitability of proportional hazards
assumptions (n = 8)" use of the nonparametric Kaplan-
Meier estimator rather than parametric survival functions
(n = 6),' 704 ek of validation with appropriate
external data (n = 2),%% clinical plausibility of the extra-
polated hazard and survival functions (n = 19),"% strue-
tural uncertainty about the most plausible extrapolation
(particularly when the duration of follow-up was short
relative to patients’ lifetime (n = 3].:"41'“ and treatment
switching (n = 5).'""235% Situations in which there
wis little or no discussion regarding the extrapolated sur-
vival functions occurred when the sensitivity of the ICER
had been assessed for a range of plausible models,” when
the survival function was mature,' " or in cases in which
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What does “immature” mean?

Recent review of NICE STAs by Tai, et al.:

“Mature” STAs
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Figure from Tai TA, et al. Prevalence of Immature Survival Data for Anti-Cancer Drugs Presented to the National Institute for Health and Care Excellence and Impact

on Decision Making. Value in Health. 2021 Apr 1;24(4):505-12.
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What does “immature” mean?
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Ascierto PA, et al. Survival Outcomes in Patients With Previously Untreated BRAF Wild-
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Robert C, et al.. Nivolumab in previously untreated melanoma without BRAF
mutation. New England journal of medicine. 2015 Jan 22;372(4):320-30.



What does “immature” mean?

Minimum 38 months follow-up
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Extrapolating based on immature data...
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Cope S, et al. Integrating expert opinion with clinical trial data to extrapolate long-term survival: a case study of CAR-T therapy for children and young adults with relapsed or
refractory acute lymphoblastic leukemia. BMC medical research methodology. 2019 Dec;19(1):1-1.



What can be done?

1. Collect more data...AND

2. Leverage external information available now to inform extrapolations

Potential sources of external data

» General population mortality rates

 Earlier phase or older trials with longer follow-up
» Observational (e.g., registry) data

« Expert clinical opinion




How to leverage external data

— Some considerations in selecting external data

— Leveraging general population mortality assumes they are appropriate for the mortality
experience of patients who do not die from their disease

— Longer term observational data is commonly only available for control arm which may not provide
insights on the extrapolation of treatment effect

— Evolving treatment patterns and first-in-class treatments limits generalizability of historical data
— Estimates from experts may be wide ranging; subject to bias

Indirect (retrospective) use Direct use
Use external sources of data to Formally incorporate external data
inform and validate model selection to inform the extrapolation
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Poll question

How have you used external data to inform survival extrapolations your
work?

a) Indirectly (to inform & validate model selection)

b) Directly (formally incorporate in extrapolation)

c) Indirectly & directly used

d) | have not yet used external data to inform my survival modeling

N
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Examples of indirect use of external data

— Have clinical experts assess
plausibility of extrapolations

— Compare landmark survival
estimates to validate
extrapolations from
parametric models

Evaluate which models fall with in the
95% confidence interval of the
summary estimates (or Kaplan-Meier
data if available)

Can be from observational data or
estimates elicited from clinical experts

— Elicit plausible ranges of survival
from experts without presenting
extrapolations
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Gibson E, et al. Modelling the survival outcomes of immuno-oncology drugs in economic evaluations: a
systematic approach to data analysis and extrapolation. Pharmacoeconomics. 2017 Dec;35(12):1257-70.

NICE DSU Technical Support Document 21:
“...retrospectively assessing the plausibility of extrapolations is
inherently subjective and as a result may be prone to personal bias.”



Examples of direct use of external data

— Directly use patient-level data for a portion of the extrapolation (e.g. piecewise or
hybrid approach)
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Examples of direct use of external data

— Formally integrate external data into the extrapolations themselves as
informative priors via a Bayesian framework A.
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Examples of direct use of external data
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Summary

— There is no magic bullet
— Increasingly robust methods are being developed

— Ultimately need to be prepared to test a (potentially long) list of plausible
scenarios — leveraging both indirect & direct methods
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