

Evaluating the impact of universal varicella vaccination strategies on clinical burden of varicella and herpes zoster in England and Wales

Pillsbury M¹; <u>Sharomi O</u>²; Xausa I³; Nachbar R³; Matthews I⁴; Pawaskar M⁵

¹Merck Research Laboratories (Rahway, NJ), Merck & Co., Inc., Kenilworth, NJ, USA; ²Merck Research Laboratories (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, USA; ³Wolfram Solutions, Champaign, IL, USA; ⁴MSD UK, Wokingham, UK; ⁵Merck & Co., Inc., Kenilworth, NJ, USA

Virtual ISPOR Europe 2021, Copenhagen, Denmark, November 22, 2021

Background

- Varicella (chicken pox) is a common infectious disease in children caused by the varicella zoster virus (VZV); it may reactivate later in adulthood as herpes zoster (HZ), or shingles
- In England, the average annual incidence of hospital admissions due to varicella was 7.6 per 100,000 during 2004-2013, and the average annual number of varicella-related deaths was 18.5¹
- Varicella vaccines have been proven safe and effective:
 - One dose 85% effective and 2 doses 98% effective at preventing any form of varicella²
- Countries that have implemented universal varicella vaccination (UVV) have observed 80%-90% declines in varicella-associated morbidity and mortality³⁻⁶
- Currently, England and Wales have not implemented a UVV program primarily due to a hypothesized increase in zoster incidence, as vaccine may prevent re-exposure to wild-type virus (exogenous boosting)
- The current analysis assumes no benefit to the population from zoster vaccines in adults.

Objective

To evaluate the long-term clinical impact of UVV and exogenous boosting on varicella and HZ in a dynamic population for England and Wales

Proprietary

Methods: Dynamic Transmission Model

- Utilized age-structured, deterministic, dynamic transmission model using a dynamic population and adapted to England and Wales⁷
 - Based on MSEIRV (Maternal-Susceptible-Exposed-Infected-Recovered-Vaccinated) model
- Model features
 - Includes health states representing reactivation of VZV, potentially leading to HZ outbreaks
 - Differentiates between individuals who receive first or second vaccination dose
 - Uses Failure-Take-Waning structure of vaccine effectiveness⁸
 - Accounts for growing and aging population (dynamically changing population)

4

Methods: UVV program inputs

- Two intervals between 1st and 2nd dose
- Vaccines evaluated
 - Monovalent: V-MSD (VARIVAX[®])
 V-GSK (Varilrix[®])
 - Quadrivalent: MMRV-MSD (ProQuad[®]) MMRV-GSK (Priorix-Tetra[®])
- Catch-up vaccination included and lasts two years during UVV program (for selected strategies)
- Coverage consistent with early childhood vaccination rates⁹ and TdaP/IPV booster¹⁰
 - 12 and 18 months of age: 91%
 - 40 months of age: 88%
 - 13-14 years of age: 87%

Strategy	Formulation		Age at vaccination (months)		2-dose Catch-up
	1st Dose	2nd Dose	1st Dose	2nd Dose	(13-14 years)
А	MMRV-MSD		18		
В	MMRV-GSK		18		
С	V-MSD	V-MSD	12	18	V-MSD
D	V-GSK	V-GSK	12	18	V-GSK
Е	V-MSD	MMRV-MSD	12	18	
F	V-GSK	MMRV-GSK	12	18	
G	V-MSD	MMRV-MSD	12	40	V-MSD
Н	V-GSK	MMRV-GSK	12	40	V-GSK
I.	V-MSD	V-MSD	12	40	V-MSD
J	V-GSK	V-GSK	12	40	V-GSK

MSD

Methods: Key inputs/outputs

- Model used temporary/full immunity model of exogenous boosting to assess the impact on HZ
- Model calibrated to
 - Varicella transmission to seroprevalence data¹¹⁻¹⁴
 - HZ reactivation to HZ incidence data¹⁵⁻¹⁸
 - Case fatality for varicella and HZ¹⁸
- Varicella consultation (outpatient care) and hospitalization fitted to UK data^{1,19}
- Vaccine-related parameters shown in the table
- Exogenous boosting assumptions:
 - % of contacts leading to boosting: 33.4%
 - Duration of protection: 81.3 years
- Outcomes reported over 50-year time horizon
 - Varicella cases (total, outpatients, hospitalizations, deaths)
 - HZ cases (total, deaths)

Parameter	Dose	MSD	GSK
Vaccine failure rate	1st & 2nd	4%	5%
Dose take rate	1st	90.3%	61.7%
	2nd	69.0%	83.4%
Duration of temporary immunity when vaccine does not take	1st & 2nd	1.2 years	0.9 years
Waning period of high HZ immunity post vaccination	1st & 2nd	81.3 years	81.3 years

Results: Total varicella incidence by vaccination strategy (2022–2072)

Results: Natural varicella incidence by vaccination strategy (2022-2072)

Proprietary

Results: Breakthrough varicella incidence by vaccination strategy (2022–2072)

Results: Reduction in total varicella cases and varicella deaths (2022-2072)

- Vaccination strategies
- A: MMRV-MSD (18M)
- B: MMRV-GSK (18M)
- C: V-MSD (12M, 18M, catch-up)
- D: V-GSK (12M, 18M, catch-up)
- E: V-MSD (12M) + MMRV-MSD (18M)
- F: V-GSK (12M) + MMRV-GSK (18M)
- G: V-MSD (12M) + MMRV-MSD (40M) + V-MSD (catch-up)
- H: V-GSK (12M) + MMRV-GSK (40M) + V-GSK (catch-up)
- I: V-MSD (12M, 40M, catch-up)
- J: V-GSK (12M, 40M, catch-up)

10

Results: Reduction in varicella outpatients and hospitalizations (2022–2072)

Vaccination strategies A: MMRV-MSD (18M) B: MMRV-GSK (18M) C: V-MSD (12M, 18M, catch-up) D: V-GSK (12M, 18M, catch-up) E: V-MSD (12M) + MMRV-MSD (18M) F: V-GSK (12M) + MMRV-GSK (18M) G: V-MSD (12M) + MMRV-MSD (40M) + V-MSD (catch-up)

- H: V-GSK (12M) + MMRV-GSK (40M) + V-GSK (catch-up)
- I: V-MSD (12M, 40M, catch-up)
- J: V-GSK (12M, 40M, catch-up)

Results: Herpes Zoster Incidence by Vaccination Strategy (2022 – 2072)

Results: Total HZ cases and deaths by vaccination strategy (2022–2072)

Strategy	HZ cases		HZ deaths	
	Total	% Change	Total	% Change
noVax	13,168,468	-	4,757	-
А	12,740,377	-3.3%	4,935	3.7%
В	12,581,074	-4.5%	4,900	3.0%
С	12,800,974	-2.8%	4,948	4.0%
D	12,753,195	-3.2%	4,943	3.9%
Е	12,791,341	-2.9%	4,946	4.0%
F	12,722,207	-3.4%	4,940	3.8%
G/I	12,793,067	-2.9%	4,947	4.0%
H/J	12,723,183	-3.4%	4,941	3.9%

Vaccination strategies A: MMRV-MSD (18M) B: MMRV-GSK (18M) **C**: V-MSD (12M, 18M, catch-up) D: V-GSK (12M, 18M, catch-up) E: V-MSD (12M) + MMRV-MSD (18M) F: V-GSK (12M) + MMRV-GSK (18M) G: V-MSD (12M) + MMRV-MSD (40M) + V-MSD (catch-up) H: V-GSK (12M) + MMRV-GSK (40M) + V-GSK (catch-up) I: V-MSD (12M, 40M, catch-up) J: V-GSK (12M, 40M, catch-up)

13

Limitations

- There is currently no paediatric vaccination visit at 18 months in the UK, which was the modelled timepoint for the one-dose MMRV strategies (A, B) and two-dose short interval strategies (C-F); this might have an impact on coverage rates
- While vaccines against HZ are available (e.g., Zostavax-MSD, Shingrix-GSK), these are not accounted for in this model, leading to conservative estimates for impact on HZ incidence
- We used the temporary immunity model to estimate exogenous boosting and its duration. There is also ongoing research on alternative modelling of the exogenous boosting mechanism such as progressive immunity²⁰

Conclusions

- All UVV strategies are projected to substantially reduce varicella morbidity (70%-92%) and mortality (16%-41%) in England and Wales over the period from 2022–2072 compared with no vaccination
- In the absence of HZ vaccination, the UVV program had a modest impact on HZ cases (2.8%-4.5% reduction) and deaths (3.0%-4.0% increase) during this period compared with no vaccination
- Impact of UVV on HZ incidence is sensitive to the assumptions of exogenous boosting in this model. Our assumptions are based upon the latest real-world evidence data in the UK²¹
- Policy makers should consider including UVV in their childhood immunization program to reduce disease due to varicella
- Additional research is needed to assess the cost-effectiveness of UVV in England and Wales

References

- ¹ Hobbelen PH, et al. *J Infect.* 2016;73(3):241-253.
- ² US Centers for Disease Control and Prevention. Varicella vaccine effectiveness. https://www.cdc.gov/vaccines/vpd-vac/varicella/hcp-effective-duration.htm. Accessed 11/04/2021.
- ³ Zhou F, et al. *JAMA*. 2005;294(7):797-802.
- ⁴ Tan B, et al. *Pediatr Infect Dis J.* 2012;31(9):956-963.
- ⁵ Chaves SS, et al. *Pediatrics*. 2011;128(6):1071-1077.
- ⁶ Marin M, Zhang JX, Seward JF. *Pediatrics*. 2011;128(2):214-220.
- ⁷ Wolfson LJ, et al. *PloS One*. 2019;14(8):e0220921.
- ⁸ Pillsbury M, Carias M, Samant C, Pawaskar M, PIN86 Modeling Performance Parametrization of Varicella Vaccines. Value in Health. 2020; 23: S559.
- ⁹ NHS Digital. Childhood vaccination coverage statistics 2019-2020: data tables. https://digital.nhs.uk/data-and-information/publications/statistical/nhs-immunisation-statistics/england---2019-20. Accessed 24 September 2020.
- ¹⁰ Public Health England. Td/IPV school-based programme to 31 August 2019: vaccine coverage data tables. https://www.gov.uk/government/publications/school-leaver-booster-tdipv-vaccine-coverage-estimates. Accessed 28 April 2021.
- ¹¹ Kudesia G, et al. J Clin Pathol. 2002;55(2):154-155.
- ¹² Vyse AJ, et al. *Epidemiol Infect.* 2004;132(6):1129-1134.
- ¹³ Nardone A, et al. *Vaccine*. 2007;25(45):7866-7872.
- ¹⁴ Bollaerts K, et al. *Epidemiol Infect.* 2017;145(13):2666-2677.
- ¹⁵ Hope-Simpson R. *Proc R Soc Med.* 1965;58(1):9-20.
- ¹⁶ Fleming DM, et al. *Epidemiol Infect.* 2004;132(1):1-5.
- ¹⁷ Gauthier A, et al. *Epidemiol Infect.* 2009;137(1):38-47.
- ¹⁸ Brisson M, Edmunds WJ. J Med Virol. 2003;70(Suppl 1):S9-S14.
- ¹⁹ Walker JL, et al. *Epidemiol Infect.* 2017;145(13):2678-2682.
- ²⁰ Talbird SE, et al. *Expert Rev Vaccines*. 2018;17(11):1021-1035.
- ²¹ Forbes H, et al. *BMJ.* 2020;368:I6987.