At first I was afraid, I was petrified...

Issues and possible solutions to the problem of extrapolating survival curves from limited trial data

Gianluca Baio

Department of Statistical Science | University College London

```
■ g.baio@ucl.ac.uk

○ https://gianluca.statistica.it/
○ https://egon.stats.ucl.ac.uk/research/statistics-health-economics/
○ https://github.com/giabaio
○ https://github.com/StatisticsHealthEconomics
● @gianlubaio
```

ISPOR Europe 2021, Spotlight Session 3

2 December 2021

© Gianluca Baio (UCL)

The problem with survival analysis in HTA

Time-to-event data constitute the main outcome in a large number of HTAs (e.g. for cancer drugs)

Data

- (Tori's part): The trial data have a very limited follow up, which implies large amount of censoring
 - This is often OK(-ish!) for "medical stats" analysis.
 But HORRIBLE for economic evaluation! \
 (\Rightarrow\) Extrapolation
- We may (or may not!) access individual level data for "our" trial, but not for the competitors'
 - Naturally leads to NMA-like models
- Often the data are manipulated by the stats team within the sponsor and the economic modellers only get summaries/estimates
 - It is ALWAYS good to leave things to statisticians.
 But the modellers can (should?!) be statisticians too, so they could handle the data!...

The problem with survival analysis in HTA

Time-to-event data constitute the main outcome in a large number of HTAs (e.g. for cancer drugs)

Models

- Which model is the "best fit" how to judge that?
- Is modelling even enough? (How to make the most of "external data")
- Should you be Bayesians about this?
 - (Spoiler alert: the answer is *always* Yes!... 😉)

To be or not to be (a Bayesian)?...

Frequentist ("standard")

Bayesian

A

Bayesian only speaks one language: probability distributions to describe

- Sampling variability (relevant for observ*ed* data)
- Epistemic uncertainty (relevant for unobservable parameters + yet unobserved future data)
- Contextual (="prior") information to be formally included in the construction of the model
 - Almost irrelevant when evidence is "definitive" (large and consistent data)
 - Crucial when data are sparse! (... But this isn't preposterous, is it?...)

To be or not to be (a Bayesian)?...

In HTA

Frequentist ("standard")

Bayesian

Bayesian survival analysis in HTA

- We can specify "minimally informative" priors (eg like survHE does by default)
 - In many ways, that's the "lazy" option...
- Similarly, we can try the various models suggested in the guidelines and see what happens...
 - We probably know something more about the likely shape of the hazard function
 - Likely to be monotonically increasing?
 - Definitely unlikely to be constant over time?...
 - These considerations should drive the choice of models over and above testing all the options!
 - What else do we know?
 - Likely average survival time
 - Chances of surviving after \(t^*\) units of time (eg >75 years old)
 - Population data to "anchor" the extrapolated survival curves
 - \(\ldots\)

A

Need ways to leverage the (limited) information in the observed data and underlying/context matter!