TARGETED LITERATURE REVIEW OF DISCRETE-CHOICE EXPERIMENT METHODOLOGY, AS APPLIED TO THERAPIES IN T2DM

Authors: Collings H¹, Wyn R¹, Tavella F¹

Affiliations: ¹Adelphi Values PROVE, Manchester, United Kingdom

Background and objectives

- > Patients' level of preference for available therapy options may affect their adherence or their willingness to begin new therapies; especially in type 2 diabetes mellitus (T2DM), where most therapies for glycemic control are self-administered daily, possibly by self-injection.
- > Patient preferences have previously been measured using discrete-choice experiments (DCEs), where respondents must consider their willingness to trade off different characteristics of the offered therapies; for example by selecting a profile that is more convenient but less efficacious.
- > However, the exact design and process of conducting DCEs may vary, including in terms of:
- the attributes included within profiles, and the methods of selecting these attributes;
- how levels are combined to generate profiles, and how profiles are combined to generate choice sets;

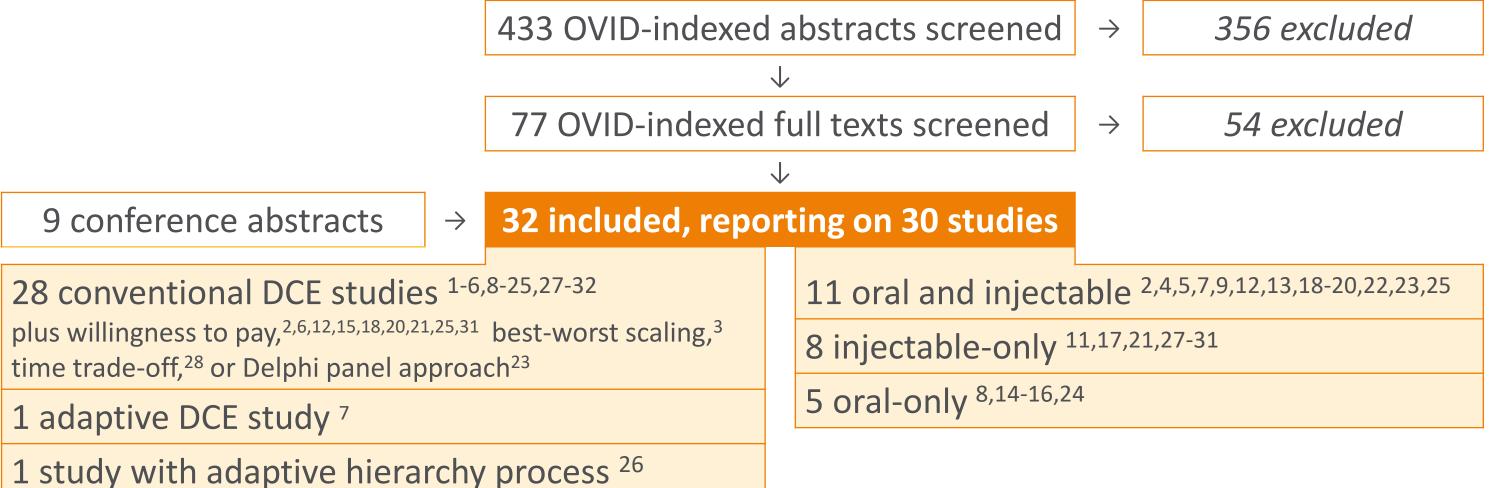
(see Glossary to the right for definitions of terms)

- the number of unique choice sets presented, and how these are presented to respondents.
- > This targeted literature review assessed the methodology of published DCEs, and collected examples of best practice for such studies in future.

Methods

> A pre-defined search strategy was used to capture OVID-indexed literature published between 2008 and August 2018, which was then supplemented with literature from relevant conferences relating to outcomes research or diabetes (×9) (see Table 1).

Table 1. Sources of literature captured within the targeted literature review


OVID databases searched:		Conference proceedings searched:			
Embase	searched 08/2018	ISPOR (international)	05/2018	ADA	06/2018
MEDLINE®		ISPOR (Asia Pacific)	09/2018	EASD	09/2017
MEDLINE® Daily Update		IAHPR	11/2017	IDF	12/2017
PsycINFO		ICMC	04/2017	JDS	05/2018
EconLit		IHEA	07/2017		

- > Each final inclusion fulfilled the following criteria:
- primary research publication describing a DCE or similar study, in English;
- assesses the preferences of patients with T2DM;
- assesses preferences for real or hypothetical therapies for control of glycemia, of any class (e.g. oral and/or injectable therapies; insulin and/or non-insulin therapies).

Results

- > In total, 32 publications (on 30 unique studies) were included from all sources (see **Figure 1**). 1-32
- These comprised 23 full-text publications, 2,4-8,10-22,25,28-30 and 9 conference abstracts or posters. 1,3,9,23,24,26,27,31,32

Figure 1: PRISMA diagram of inclusions and exclusions, with characteristics of included studies

Selection and use of attributes:

- > Publications reported selecting and populating attributes using sources such as expert consultation, published literature, product descriptions, and clinical trial results. 1-3,5,6 7-21,24-30
- However, only 12 of 30 studies (40%) explicitly involved patients with T2DM in selecting or validating attributes in this initial development process. 1,6,7,12,13,17,19-21,24,26,29,30
- > 26 of 30 studies (87%) presented 5–8 attributes per profile (see **Figures 2** and **3**).^{1,3-6,8-19,21-27,29-32}

Figure 2: Most common attributes presented within therapy profiles

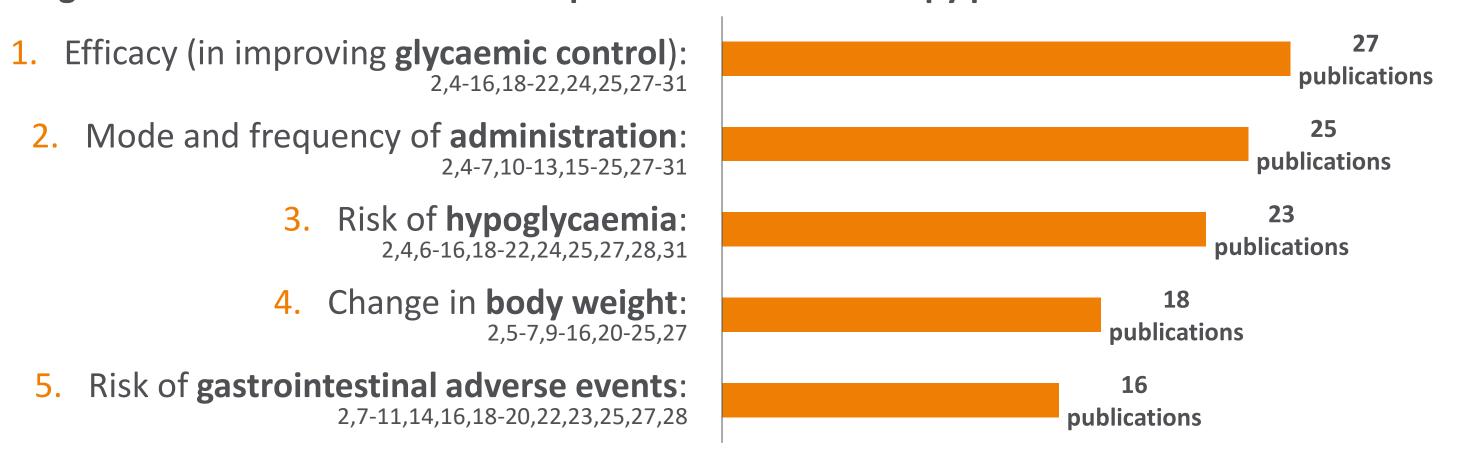
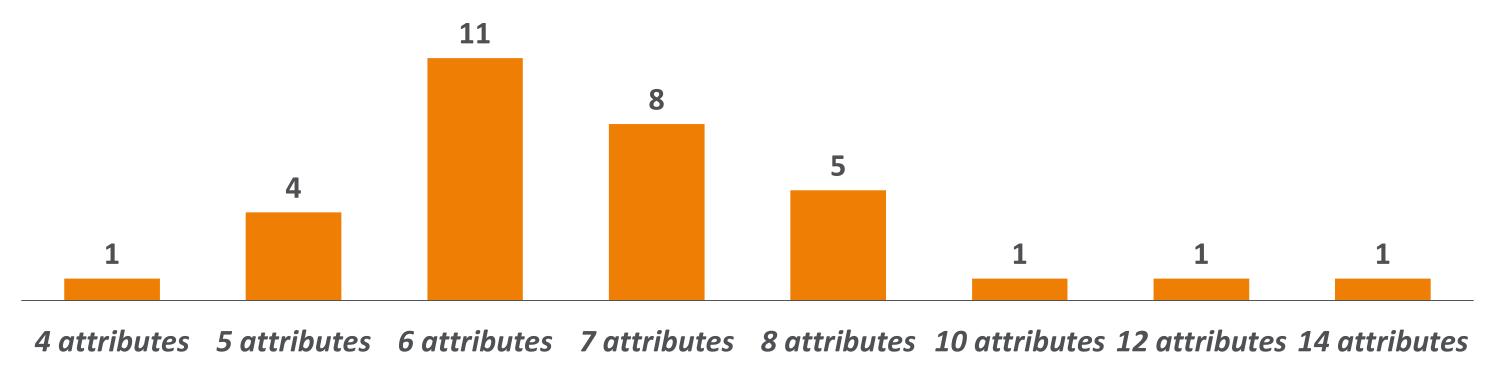



Figure 3: Number of attributes used in each study to construct profiles

Results (continued)

Construction and quantity of choice sets:

- > The number of choice sets presented to each patient varied between 1 and 27.^{5,21}
- No publication reported using choice sets of any more than two profiles, or that respondents could opt out of making a selection.

How preference results were analysed:

- > 16 of 30 studies (53%) used mixed logit or random parameters logit modelling to analyse results;^{3,6,8-10,14-17,19,22,23,27,29,30,32}
- However, conditional logit models were also commonly used, in 11 studies. 1-3,12,13,18,20,21,25,29,30

How DCEs were administered:

- > 19 of 30 included studies (63%) were administered in the form of an online questionnaire. 1,2,5-9,14-20,22,24,25,28-30
- > In 23 of 30 studies (77%), preference results were gathered from between 100 and 400 participants,^{2,7,8,10-13,21,24-28} or between 400 and 700 participants.^{1,3,9,14,17-20,23,30-32}
- Only 7 studies included more than 700 participants.^{4-6,15,16,22,29}
- > 24 of 30 studies (80%) were explicitly funded by pharmaceutical companies.^{2,4-11,14-17,20-22,24-31}

Conclusions

- > At least 30 DCE studies have been conducted in T2DM in order to understand patient preference for outcomes and characteristics of therapies for glycemic control.
- This method has been used to test for preferences in oral versus injectable, injectable versus injectable, and oral versus oral comparisons.
- > Commonalities between these studies provide evidence on how to design future DCEs.
- There is precedent for testing attributes such as a therapy's impact on glycaemic control, the nature of administration, hypoglycaemia risk, weight change, and risk of gastrointestinal adverse events.
- The participation of patients with T2DM in the development of a DCE should be fully explained, to reinforce the validity of the experiment (and therefore its results).
- Respondents to a DCE itself should be asked to complete choice sets of 2 profiles each, with each profile describing approximately 6 attributes of treatment.
- The DCE choice sets may be administered online.
- The preference data resulting from a DCE can be analysed with mixed-logit or randomparameters logit modelling, or conditional logit modelling.
- > Together with good practice guides published by groups such as ISPOR,^{33,34} the reported information provides a model approach for using DCEs to gather patient preference in T2DM.
- > The DCE methodology presented here may be particularly useful in T2DM, where patient preference is likely to be an important differentiating factor between therapies, within and across drug classes and modes of treatment.

Glossary Choice set a collection of two or more **profiles**, that a respondent is asked to select from **Profile** a combination of attributes set at specific levels, representing a therapy a general characteristic or outcome of therapies **Attribute** (e.g. risk of experiencing hypoglycaemic events during treatment) a specific characteristic or outcome of a therapy (e.g. 50% probability of a hypoglycaemic event each week of treatment)

Abbreviations:

ADA: American Diabetes Association; DCE: discrete choice experiment; EASD: European Association for the Study of Diabetes; IAHPR: International Academy of Health Preference Research; ICMC: International Choice Modelling Conference; IDF: International Diabetes Foundation; IHEA: International Health Economics Association; ISPOR: International Society for Pharmacoeconomics and Outcomes Research; JDS: Japanese Diabetes Society; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; T2DM: type 2 diabetes mellitus.

References:

1. Beyer A et al. Value in Health. 2015;18(7):A469. 2. Bøgelund M et al. Current Medical Research and Opinion. 2011;27(11):2175-2183. 3. Bridges JF et al. "Measuring treatment preferences of people with type 2 diabetes with a discrete choice experiment and best-worst scaling: a randomized experiment." Presented at International Choice Modelling Conference 2017. 4. Casciano R et al. International Journal of Clinical Practice. 2011;65(4):408-414. 5. Dibonaventura MD et al. Patient Preference and Adherence. 2010;4:397-406. 6. Feher MD et al. BMJ Open Diabetes Research and Care. 2016;4(1):e000192. 7. Flood EM et al. Current Medical Research and Opinion. 2017;33(2):261-268. **8.** Gelhorn HL et al. *Diabetes, Obesity and Metabolism*. 2013;15(9):802-809. **9.** Gelhorn HL et al. Value in Health. 2014;17(7):A354. **10.** Gelhorn HL et al. Patient Preference and Adherence. 2015;9:1611-1622. 11. Gelhorn HL et al. Patient Preference and Adherence. 2016;10:1337-1348. 12. Guimarães C et al. International Journal of Technology Assessment in Health Care. 2009;25(3):359-366. 13. Guimarães C et al. Patient Preference and Adherence. 2010;4:433-440. 14. Hauber AB et al. Diabetic Medicine. 2009;26(4):416-424. 15. Hauber AB et al. Patient Preference and Adherence. 2013;7:937-949. 16. Hauber AB et al. Diabetes Therapy. 2015;6(1):75-84. 17. Hauber AB et al. Current Medical Research and Opinion. 2016;32(2):251-262. 18. Janssen EM et al. Patient Preference and Adherence. 2017;11:1729-1736. 19. Janssen EM et al. Value in Health. 2018;21(1):59-68. 20. Jendle J et al. Current Medical Research and Opinion. 2010;26(4):917-923. 21. Lloyd A et al. Clinical Therapeutics. 2011;33(9):1258-1267. 22. Mansfield C et al. Diabetes Therapy. 2017;8(6):1365-1378. 23. Marchesini G "Treatment of type 2 diabetes: learning from patients' preferences." Presented at European Association for the Study of Diabetes Annual Meeting 2018. 24. Mohamed A et al. Value in Health. 2012;15(7):A505. **25.** Morillas C et al. *Patient Preference and Adherence*. 2015;9:1443-1458. **26.** Mühlbacher AC et al. Value in Health. 2013;16(7):A446.27. Norrbacka K et al. Value in Health. 2017;20(9):A484. 28. Polster M et al. Journal of Medical Economics. 2010;13(4):655-661. **29.** Qin L et al. Diabetes Therapy. 2017;8(2):321-334. **30.** Qin L et al. *Diabetes Therapy*. 2017;8(2):335-353. **31.** Yang M et al. *Value in Health*. 2012;15(4):A185. 32. Zhou M et al. "Explore preference heterogeneity for the treatment preferences of people with type 2 diabetes: A comparison of random-parameters and latent-class estimation techniques." Presented at International Choice Modelling Conference 2017.

33. Bridges JF et al. *Value in Health*. 2011;14(4):403-413. **34.** Johnson FR et al. *Value in Health*. 2013;16(1):3-13.