LONG-TERM COST-EFFECTIVENESS OF ESKETAMINE FOR THE TREATMENT OF TREATMENT-RESISTANT DEPRESSION

Touchette DR,¹ Boyer N,² Atlas SJ,³ Agboola F,⁴ Talon B,¹ Schultz BG,¹ Kumar VM,⁴ Fazioli K,⁴ Fluetsch N,⁴ Rind DM.⁴

¹University of Illinois at Chicago College of Pharmacy, Chicago, IL ²University of Chicago Hospital Medicine, Chicago, IL ³Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA ⁴Institute for Clinical and Economic Review, Boston, MA

OBJECTIVE

Treatment-resistant major depressive disorder commonly refers to major depressive disorder for which there is an inadequate response to two or more anti-depressant (AD) treatments of adequate dosing and duration. The objective of this analysis was to evaluate the lifetime cost-effectiveness of adding esketamine nasal spray, a new treatment for treatment-resistant depression, to a regimen of background AD treatment compared with AD alone in patients with treatment-resistant depression.

METHODS

Table 1. Base Case Key Model Inputs

Parameters	Esketamine	No Additional Treatment
Probability, Effective Initial Treatment	39.5% ^{1,2}	28.8% ^{1,2}
Probability, Partly Effective Initial Treatment	19.3% ^{1,2}	6.5% ^{1,2}
Probability, Effective Treatment in Subsequent Cycles After Partly Effective Treatment	19.9% ³	12.4% ³
Probability, Loss of Initial Treatment Effect in Subsequent Cycles After Effective Treatment	13.0% ³	13.0% ³
Probability, Loss of Effect in Subsequent Cycles After Partly Effective Treatment	21.0% ³	47.6% ³
Probability, Alternative Treatment Being Effective	13.0% ⁴	13.0% ⁴
Probability, Patients Discontinuing Therapy After Long-Term Effectiveness	1.3% ⁵	1.3% ⁵
Utility, No Depression	0.86 ⁶	0.86 ⁶
Utility, Mild to Moderate Depression	0.68 ⁷	0.68 ⁷
Utility, Severe Depression	0.50 ⁷	0.50 ⁷
Cost, Esketamine*		
First cycle (includes titration)	\$9322 ^{2,8-10}	n/a
All other cycles (stable dose)	\$7704 ^{2,8-10}	n/a

- Semi-Markov model with time-dependent mortality
- Three-month cycle length; lifetime time horizon
- US health care sector perspective (direct medical costs)
- Annual discount rate of 3% for costs, life-years, and quality-adjusted life-years
- Transition probabilities, utility, and cost inputs obtained through systematic literature reviews, manufacturer data, and expert opinion

Figure 1. Model Structure

*Based on WAC of \$295 per 28 mg device

Tx = treatment; blue states = First three month cycle; green states = treatment effective; orange state = treatment partly effective; red states = treatment not effective

RESULTS

Table 2. Base-Case Discounted Costs and Outcomes

Treatment Arm	Total Drug Costs	Total Tx Strategy Costs	Total QALYs	Total LYs	Total Depression- Free Days
Esketamine	\$42,600	\$448,600	12.66	20.66	373
No Additional Treatment	\$0	\$410,200	12.47	20.64	123
Difference	\$42,000	\$38,400	0.19	0.01	250

Tx: treatment; QALY: quality-adjusted life year, LY: life year

Table 3. Incremental Cost-Effectiveness Ratios for Base-Case Analysis

Treatment	Cost per QALY Gained	Cost per LY Gained	Cost per Depression-Free Day
Esketamine vs. No Additional Treatment	\$198,000	\$2,592,000	\$150

Figure 2. One-Way Sensitivity Analyses Tornado Diagrams of Esketamine Versus No Additional Treatment

Probabilities

Pa	arameter	Min	Max	
Pr	robability of Continued Effect (ESK)	79.8	8% 93	.8%
Pi	robability of DC'ing therapy if effective (ESK)	0.0	0% 15	.9%
Pi	robability of Continued Effect (ALT)	35.8	8% 85	.3%
Pi	robability of Effective Treatment (ALT)	7.	1% 18	.9%
R	R Remission (ESK:PLB)	97.9	9% 176	.1%
Pi	robability of Continued Effect (PLB)	52.9	9% 73	.3%
R	R Response (ESK:PLB)	92.:	2% 167	.8%
Pi	robability of Effective Treatment (PLB)	22.	7% 35	.0%
Pi	robability of Effect After Partial Effect (ESK)	14.	7% 25	.1%
Pi	robability of Continued Partial Effect (ESK)	70.	6% 87	.4%
Pi	robability of Continued Partial Effect (PLB)	39.	7% 65	.1%
Pr	robability of Effect After Partial Effect (PLB)	5.4	4% 19	.4%
Pi	robability of Partial Effect (PLB)	38.4	4% 52	.0%
				\$100

QALY: quality-adjusted life year, LY: life year

Figure 3. Acceptability Curve for Esketamine Compared With No Additional Treatment at Varying Willingness-to-Pay Thresholds

	_ost-Effe	ectiveness	Inreshold	
--	-----------	------------	-----------	--

Costs

Parameter	Min I	Max
Esketamine 28mg Price	\$266	\$325
Proportion taking every week in third month	33.7%	52.3%
Step 7 Medical Cost	\$2,945	\$4,227
Proportion taking 56 mg	24.2%	41.8%
Step 4 Medical Cost	\$2,590	\$2,987
Step 7 Pharmaceutical Cost	\$1,268	\$1,609
Physician Level 4 Office Visit Cost	\$99	\$121
Step 5 Medical Cost	\$2,932	\$3,512
Step 6 Medical Cost	\$2,973	\$3,886
Step 4 Pharmaceutical Cost	\$940	\$1,014
Step 5 Pharmaceutical Cost	\$1,074	\$1,166
Step 6 Pharmaceutical Cost	\$1,208	\$1,374
		\$1

Min Max

CONCLUSION

- Although esketamine appears to provide important relief depressive symptoms for some patients deriving suboptimal benefit from other treatments, the estimated lifetime cost-effectiveness of esketamine far exceeds commonly cited cost-effectiveness thresholds.
 Due to a high discontinuation rate observed in open-label studies, the majority of esketamine's cost and benefits occurred in the first five years of therapy.
 The complex Risk Evaluation and Mitigation Strategies (REMS), designed to mitigate serious adverse outcomes resulting from sedation and dissociation, as well as reduce abuse and/or misuse, further complicate therapy with esketamine.
- Treatment-resistant depression is a debilitating disease with few treatment options. There is a need for effective and affordable treatments.
- Limitations:
 - No or low-quality studies evaluating potential comparators, such as ketamine.
 - Limited information on important modifiers of treatment effect, such as:
 - Number of failed treatments during a person's lifetime
 - Pattern and frequency of depression episodes
 - Episode severity

REFERENCES

- 1. Fedgchin M, Trivedi M, Daly E, et al. Randomized, Double-Blind Study of Fixed-Dosed Intranasal Esketamine Plus Oral Antidepressant vs. Active Control in Treatment-Resistant Depression. 9th Biennial Conference of the International Society for Affective Disorders and the Houston Mood Disorders Conference. 2018.
- Popova V, Daly E, Trivedi M, et al. Randomized, Double-Blind study of Flexibly-dosed Intranasal Esketamine Plus Oral Antidepressant vs. Active Control in Treatment-Resistant Depression. Annual Meeting of the American Society of Clinical Psychopharmacology. 2018.
- 3. Daly E, Trivedi M, Janik A, et al. A Randomized Withdrawal, Double-blind, Multicenter Study of Esketamine Nasal Spray Plus an Oral Antidepressant for Relapse Prevention in Treatment-resistant Depression. Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP). 2018.
- 4. Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. The American journal of psychiatry. 2006;163(11):1905-1917.
- 5. Expert Opinion.
- 6. Sullivan PW, Ghushchyan V. Preference-Based EQ-5D index scores for chronic conditions in the United States. Medical decision making : an international journal of the Society for Medical Decision Making. 2006;26(4):410-420.
- 7. Janicak PG, Dunner DL, Aaronson ST, et al. Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of quality of life outcome measures in clinical practice. CNS spectrums. 2013;18(6):322-332.
- 8. Wajs E, Aluisio L, Morrison R, et al. Long-Term Safety of Esketamine Nasal Spray Plus Oral Antidepressant in Patients with Treatment-Resistant Depression: Phase 3, Open-Label, Safety and Efficacy Study (SUSTAIN-2). Annual Meeting of the American Society of Clinical Psychopharmacology. 2018.
- 9. Food and Drug Administration (FDA). Spravato (Esketamine) Label. 2019; http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/SPRAVATO-pi.pdf.
- 10. Redbook. 2019. Micromedex Online. Accessed March 12, 2019.

DISCLOSURE

DRT, NB, BT, and BGS were supported by a grant from the Institute for Clinical and Economic Review (ICER) to the UIC College of Pharmacy. SJA was supported by a grant from ICER to Massachusetts General Hospital. FA, VMK, KF, NF, and DMR are employees of ICER.

