

INPATIENT COST-SAVINGS FROM THE USE OF SUCROFERRIC OXYHYDROXIDE IN CHRONIC KIDNEY DISEASE PATIENTS UNDERGOING DIALYSIS IN FIVE EUROPEAN COUNTRIES

Ramirez de Arellano Serna A¹, Kotsopoulos N², Schaufler T³, Walpen S⁴

1.Vifor Pharma Group, Glattbrugg, Switzerland; 2. Global Market Access Solutions, Geneva, Switzerland; 3.Vifor Pharma Group, Zurich, Switzerland; 4. Vifor Fresenius Medical Care Renal Pharma, Glattbrugg, Switzerland.

Research aims

- The objective of this analysis is to translate reduced hospitalization rates, associated with the use of sucroferric oxyhydroxide (SO), into potential cost-savings for healthcare systems in France, Germany, Italy, Spain and the UK.

Background

- Hyperphosphatemia is a predictable consequence of advanced chronic kidney disease (CKD), associated with increased morbidity and mortality in patients undergoing hemodialysis (HD).¹ Patients with CKD on HD who develop hyperphosphatemia, require oral phosphate binders (PBs) to control their serum phosphorus (SP) levels.^{1,2}
- PBs must be taken with every meal, often in conjunction with other medications or nutritional supplements, leading to a high pill burden for patients on dialysis.³
- SO is a non-calcium, iron-based PB indicated for the control of serum phosphorus (sPhos) levels in adult CKD patients on HD or peritoneal dialysis (PD).⁴
- SO has shown a higher phosphate binding capacity and lower pill burden than other PBs, which might improve adherence and may hence lead to more patients achieving effective SP control.⁵
- Recent US retrospective data have shown that patients receiving SO showed reduced hospitalization rates and hospital stay compared to patients who switched from SO to other PBs.⁶
- Reducing hospitalization is expected to result in cost-savings for the healthcare budget.

Methods & Data

- US retrospective data showed that SO results in reduced >24 hours hospitalization rates, adjusted for length of stay included hospitalization counts and serum ferritin at baseline (Table 1).⁶
- A cost-model was used to convert real-world hospitalization incidence rates among patients receiving SO or other PBs into hospitalization costs per patient year (PY).
- A literature review was conducted, and hospitalization cost data were identified for the in-scope countries and converted to € 2018 (Table 2).

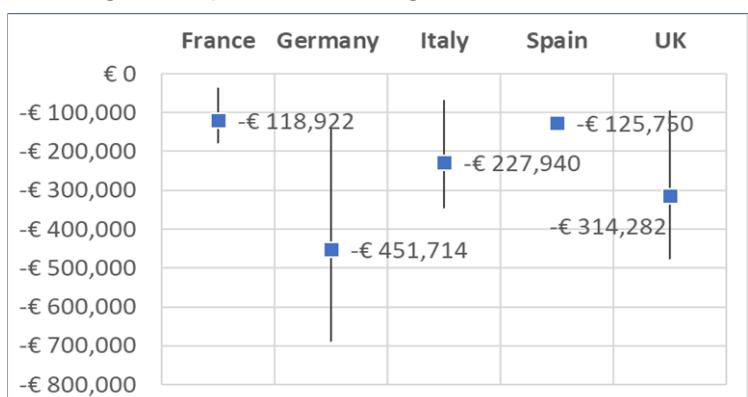
Table 1: Adjusted hospital admission rates among mSO and dSO patients over the 2-year follow-up⁶

	Incidence Rate (per PY)	Incidence Rate Ratio* [95% CI]	Incidence Rate Difference* [95% CI]	P-Value	LOS (days per PY) [‡]	Difference in LOS per PY [‡] [95% CI]	P-Value
mSO	0.92	0.7	-0.4	0.006	2.97	-1.25	0.035
dSO	1.31	[0.54, 0.91]	[-0.80, -0.14]		4.22		

Hospital admission rates were similar between mSO and dSO patients at baseline. Analysis carried out using *Poisson regression; [‡] negative binomial model. Covariate adjustment for LOS included hospitalization counts and serum ferritin at baseline.CI, confidence interval; dSO, patients who discontinued sucroferric oxyhydroxide, and were treated with non-SO PB; LOS, length of hospital stay; mSO, patients who received 2 years maintenance therapy with sucroferric oxyhydroxide; PY, patient year

References

- Hutchison AJ. Kidney international. 2009; 75:906-914; **2.** Locatelli F et al., Expert opinion on drug safety. 2014; 13:551-561; **3.** Chiu YW et al., Clinical journal of the American Society of Nephrology: CJASN. 2009; 4:1089-1096; **4.** Floege J, et al. Kidney Int. 2014; 86:638-47; **5.** Coyne W, Ficociello L, et al., (2018) NKF Spring Clinical Meeting 2018, Poster 166; **6.** Rosen M, Ficociello L, et al., (2018) Hospital Admission Rates among Hemodialysis Patients who Switch to Sucroferric Oxyhydroxide (SO) Compared to Patients who Discontinue SO and Receive other Phosphate Binders; **7.** HAS (2014) RAPPORT D'ÉVALUATION MÉDICO-ÉCONOMIQUE Évaluation médico-économique des stratégies de prise en charge de l'insuffisance rénale chronique terminale en France; **8.** Meyer A, Bunzemeier H, Haussberg M, et al., (2008) European Renal Association;23(6):1955-60; **9.** Roggeri A, Salomone M. (2014) Advances in Nephrology 2014; **10.** Lorenzo-Sellares V, Pedrosa MI, Santana-Exposito B, et al.(2014) Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia;34(4):458-68. **11.** Kent S, Schlackow I, Lozano-Kühne J, et al. (2015) BMC Nephrol; 16:65-65.


Table 2: Inpatient cost inputs per country

Country	Data description	Cost (€,2018)
France	Cost of "other hospitalizations" per dialyzed patients (in-center dialysis)	€3,026 ⁷
Germany	The cost per hospitalization in Germany for patients with CKD and cardiovascular morbidity was reported to be similar to the cost of the nephrological pediatric DRG tariff	€11,494 ⁸
Italy	Weighted average all-cause hospitalization costs per hospitalization of dialyzed patients (HD&PD)	€5,800 ⁹
Spain	Cost per hospitalization day of CKD patients	€1,006 ¹⁰
UK	Incremental cost of a major vascular event for patients on HD per case	€7,997 ¹¹

Results

- Compared to patients not receiving SO, patients receiving SO had 39.0 fewer hospital admissions (>24 hours) per 100 PYs [incidence rate ratio = 0.7 (0.54, 0.91)].
- Patients receiving PBs other than SO are expected to result in hospitalizations costs of €396,406, €1,505,714, €759,800, €424,532, €1,047,607 per 100 PYs for France, Germany, Italy, Spain and the UK, respectively.
- SO is likely to result in average hospitalization cost-savings of 30% [Range: 9% - 46%] in France, Germany, Italy and the UK.
- Figure 1 shows the savings per 100 PYs for patients receiving SO for the observed ranges of hospital admission rate reductions
- In Spain, the reduction of hospital stay (-1,25 days) was used to estimate savings of €125,750 per 100 PYs.

Figure 1: Inpatient cost-savings per 100 PYs for patients receiving SO vs. patients receiving other PBs in the EU5

Conclusions

- SO is a highly effective PB that may result in substantial cost-savings from reducing the morbidity and hospitalizations attributable to uncontrolled hyperphosphatemia among dialysis patients.