IMPROVING CYCLE CORRECTION FOR TIME-HOMOGENEOUS MARKOV MODELS

Tushar Srivastava¹; Mark Strong¹; Matthew D Stevenson¹; Peter J Dodd¹

The University Of Sheffield.

1. School of Health and Related Research, University of Sheffield, UK

BACKGROUND

□ Markov models are widely used within health economic modelling¹

- □ These models specify transition probabilities between discrete health states at each time step¹
- Changes in health states occur at fixed intervals which may approximate an underlying continuous-time process
- □ Frequently, correction methods are applied to discrete-time outputs to yield a closer approximation to an underlying continuous-time Markov chain²

Our new third-order GQ-Method outperforms other cycle correction

RESULTS

Coord order CO - Simmon 1/2 ware coord best moth

methods

 \Box Second order GQ \equiv Simpson 1/3 were second-best method

Figure 2 : PSA results (log-error of costs and QALY approximation by method)

OBJECTIVE

□ To introduce a *novel* correction method based on Gaussian Quadrature (GQ)

□ Comparison of existing cycle correction methods and new proposed GQ method with exact continuous-time process outcomes (gold standard) in a simulation case study

EXISTING CYCLE CORRECTION METHODS

□ "Standard" Half Cycle Correction (HCC) Method

Trapezoidal Method

□ Simpson's 1/3 Method

□ Simpson's 3/8 Method

These methods are based on approximating the integrals over time that define outcomes of interest

 Table 2: Results of Simulation Study

PROPOSED NEW METHOD

□ Correction based on applying a numerical integration technique - Gaussian Quadrature (GQ) – to an exact formula for continuously calculated quantities

 \Box GQ is a set of methods approximating integrands as a sum of *n* orthogonal polynomials; larger order *n* leads to better approximations.

□ First order GQ method is found to be *identical* to standard HCC & Second order GQ method is found to be *identical* to Simpson 1/3

□ The **Third order GQ** method is a *novel* cycle correction method

Correction Method	Total Costs	Total QALYS	
Gold standard – Continuous model	£228.762	4.27397	
No correction performed	£228.946	4.76314	
1 st order GQ method	£226.447	4.28816	
2 nd order GQ method	£228.682	4.27386	
3 rd order GQ method	£228.760	4.27396	
Half cycle correction	£226.447	4.28816	
Trapezoidal method	£226.447	4.28816	
Simpson 1/3 method	£228.682	4.27386	
Simpson 3/8 method	£228.589	4.27374	

LIMITATIONS

SIMULATION CASE STUDY

Cycle length: 1 year Time Horizon: Lifetime

Probabilistic sensitivity analyses was undertaken using Latin hypercube sampling experimental design to draw 10,000 parameter sets with each input parameter following a specified distribution □ We have not computed the error bounds for relative errors & not guaranteed that GQ method would always be better. Future research is needed

□ Model type considered for simulation study was one with constant transition matrix rather than time-varying transition matrix. Future research is needed

Table 1: Model Inputs

We considered a uniform distribution over Well vs Unwell as the initial state, and assumed each of the four transition rates (Well-to-Unwell, Well-to-Dead, Unwellto-Well, Unwell-to-Dead) were exponentially distributed with rate parameter = 1

CONCLUSIONS

 \Box 3rd order GQ method can improve on existing within cycle correction approach

□ It can be easily implemented in modelling software such as MS- Excel and R

References:

- 1. Siebert et al (2012) State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3
- 2. Elbasha et al (2015) Theoretical Foundations and Practical Applications of Within-Cycle Correction Methods

Disclosures: This work is based on independent research. There are no conflicts to disclose.

Contact Us: <u>t.srivastava@sheffield.ac.uk</u> <u>https://www.sheffield.ac.uk/scharr/sections/heds</u>

Model Inputs	Mean Value	Standard Deviation	Distribution used in PSA
'Well' State Cost	£5	£1	Log Normal (1.6,0.198)
'Unwell' State Cost	£100	£20	Log Normal (4.61,0.198)
'Dead' State Cost	£0	£0	N/A
'Well' State Utility	0.95	0.19	Beta (0.3,0.016)
'Unwell' State Utility	0.6	0.12	Beta (9.4,6.27)
'Dead' State Utility	0	0	N/A