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ISPOR Reports–Editorial
Are We Ready to Use Constrained Optimization in
Health Outcomes Research?
Decision-analytic modeling is an accepted approach used by
many health technology assessment agencies to assess the
cost-effectiveness (i.e., value) of new and existing health care
technologies [1,2]. These agencies (along with payers, physicians,
and other stakeholders) recognize that decision analysis can be
used to forecast health outcomes and to understand the
value of medical technologies based on clinical trial data before
they are used in clinical practice. In fact, decision modeling
as an analysis tool has expanded and helps us to understand
a variety of additional outcomes issues associated with health
care, including the budget impact, cost of care, and risk versus
benefit.

Mathematical programming, mathematical optimization, and con-
strained optimization are terms used to describe a mathematical
technique to find the best or “optimal” solution to a problem for a
given set of decision variables and a series of constraints. It is a
decision-analytic modeling approach that, in its simplest form,
is made up of an objective function (i.e., equation) that is to be
maximized or minimized subject to a set of constraint equations
(i.e., limits). Finding the maximum or minimum solution for the
objective function requires finding the best set of values for the
decision variables.

Constrained optimization is typically used to find an optimal
allocation of resources. It has been used to solve problems in
many fields, such as allocating available funds among different
investments in financial planning, blending materials in manu-
facturing (e.g., blending different types of crude oils to produce
different types of gasoline), or logistics planning in the military.
Even in health care, these methods have been used to optimize
things such as radiation administration, operating room schedul-
ing, and staff scheduling. Nevertheless, their use is typically not
seen in outcomes research.

ISPOR’s task force on Constrained Optimization Methods in
Health Services Research was set up to introduce the value of
these methods in health systems and outcomes research. The
aim is to describe problems for which these methods may be
appropriate and to identify good practices for these methods
(https://www.ispor.org/TaskForces/Optimization-Methods-in-Health
care-Delivery.asp). The first task force report introduces the
concepts of constrained optimization and presents the metho-
dology through a simple two-dimensional example [3]. Steps to
assist researchers in constructing, solving, and reporting these
methods are reviewed. The approach is then compared with
other decision-modeling contexts traditionally seen in health
outcomes research.
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The second task force report, which is published in this issue
of Value in Health, takes the next step and reviews various
applications of constrained optimization methods in health
decision-making [4]. The steps of the optimization process are
reintroduced and applied in in-depth reviews of actual published
applications of these methods. From this second report, the
reader gets a real sense of what these methods can do and the
value they can bring to health care decision-making.

The application of constrained optimization methods has
both commonalities with and unique features to other decision
analysis methods; for example, Markov models are great for
modeling disease progression, whereas constrained optimization
is typically used for resource allocation. In addition, although
decision trees, Markov models, and constrained optimization
models can be set up in a stochastic form, simulation is
stochastic in its natural form. The list of differences goes on.
Nevertheless, as with any decision-modeling exercise, applying
these methods is a process, and the process of constructing and
solving the problem enables us to identify gaps in the availability
of data and understand and identify relationships and processes.

In some manner, constrained optimization methods provide
us with a more efficient approach for assessing value across
health technologies, and they force us to look at problems
differently. In a typical cost-effectiveness analysis used for
assessing value, we compare the outcomes from one treatment
to another treatment using simple calculations (or decision tree),
Markov, or simulation approaches. We use these same methods
for assessing affordability or the budget impact, in which we
compare a budget scenario made up of one mix of treatments
(e.g., the current mix) compared with a budget scenario made up
of another mix of treatments (e.g., the new intervention). As a
result, we are conditioned to think about comparing treatments
with treatments or keeping the type and number of health
technologies to a minimum because problem complexity
increases tremendously with the number of technologies con-
sidered. We can see this in the first case study reviewed in the
second task force report, in which an allocation of the prevention
strategies (screening, vaccination, screening at different time
intervals plus vaccination, and no prevention) is considered.
Rather than a comparison of one vaccine versus another vaccine
or one screening approach versus another screening approach,
the problem approach expands across various prevention
modalities, which deviates from the typical comparison consid-
ered in cost-effectiveness or budget-impact analyses. In addition,
although still difficult to solve (i.e., requiring a large number of
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decision variables), the problem structure is contained to a reason-
able set of equations. In fact, there are 52 decisions or combina-
tions of prevention approaches that are considered. Nevertheless,
even with 52 choices to consider, the problem structure is still
straightforward. The second case study also presents an applica-
tion that could not readily be included in a typical cost-
effectiveness or budget-impact analysis. Specifically, rather than
allocating treatments, Denton et al. identify the best time (i.e., age)
to initiate statin treatment in patients with type 2 diabetes, based
on patient age and clinical history [5]. The objective is to produce
better health outcomes when considering the timing of treatment
in patients with different clinical histories.

In each of these case studies, the objective requires decisions
different from those typically made using the results of cost-
effectiveness or budget-impact analysis. Constrained optimiza-
tion methods are used to solve different types of problems. Thus,
these methods motivate us to consider broader applications of
decision analysis relating to health outcomes and budgets that
are value based and that may be of interest to a broader set of
stakeholders. As a result, a more active use of these methods to
drive health interventions could help improve health outcomes.

Despite the potential value of constrained optimization,
application of these methods in our field has been slow. One
reason may be that these methods may be viewed as more
complex. We have seen the widespread use of decision-analysis
methods, such as decision trees and Markov processes. These
methods are relatively straightforward in their calculations and
are thus relatively easy to perform and, for decision makers not
trained in these methods, easier to understand. In contrast, the
uptake of simulation modeling has been slower. Both the com-
plexity of the model structure and calculations and the data
needed to populate these models have been challenging for the
researcher and for transparency to the nontechnical decision
maker. Nevertheless, over time, we have found and continue to
find ways to deal with these challenges, allowing more wide-
spread use of simulation modeling. With constrained optimiza-
tion formulations being very heavily mathematical, it may be
that more technical expertise is required to formulate the model
structure. In addition, these complexities make it difficult for
many decision makers to comprehend.

Optimization is seen as a tool for deciding a very specific
problem rather than generating information to assist in the
decision making. With this approach, we not only are proclaim-
ing that a solution exists, but we are also proclaiming that the
solution we give is the best or “optimal” solution. It is easy to tell
people what the optimal or best solution is when dealing with
inanimate objects. But this approach can be very scary and can
result in pushback when the solution involves humans; for
example, when allocating prevention strategies for patients at
risk for cervical cancer, a patient may accept being allocated to
vaccination, but she may be less accepting if she is allocated to
receive no prevention because of her lower risk of disease or her
ready access to screening facilities.

The benefit of constrained optimization is that an “optimal”
solution is found considering a variety of constraints. As a result,
constraints can include not only budgets but also measures
of equity in allocating treatments to patients in a population.
The latter can help alleviate potential criticisms around fairness
when using the results of cost-effectiveness or budget-impact
analyses [6–8]. Nevertheless, even though these additional con-
straints are considered, the recommended solution still might
not be feasible in practice. More important, the “optimal” solution
represents the “most efficient” solution to the decision problem.
Because the constrained optimization approach gives us the
“most efficient” solution, other feasible solutions, should we
choose to use them, can be measured against it. As a result, we
now have a benchmark to compare how efficient we are. By
having this benchmark, we may be able to improve processes
without using the actual optimal solution.

This second task force helps us see real-life applications of
constrained optimization. Hopefully, the presentation of these
examples will promote consideration of different types of pro-
blems we can solve and foster a better understanding of how to
approach constructing them. Even if the work produced by these
task forces is insufficient to convince folks to think about broader
applications in the field of health outcomes and the potential
importance of these methods, a third task force—the Economic
Analysis of Vaccination Programs: ISPOR Good Practices
Task Force (https://www.ispor.org/TaskForces/Vaccines-Economi
c-Evaluation.asp)—has acknowledged that these methods have
value and application for economic assessments of prevention
programs. We hope to see more use of these methods in the
future.
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