

A COST-EFFECTIVENESS EVALUATION OF BLINATUMOMAB USE IN THE MEASURABLE RESIDUAL DISEASE NEGATIVE REMISSION STATE TO TREAT ADULTS WITH PHILADELPHIA-CHROMOSOME-NEGATIVE B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA IN FRANCE

5904

J. CARETTE¹, G. LAUBEL¹, B.MAZALEYRAT²

¹Public Health Expertise-Cencora, Paris, France; ²AMGEN SAS, Courbevoie, France.

INTRODUCTION

- B-cell precursor acute lymphoid leukemia (B-ALL) is characterized by the excessive proliferation of lymphoblastic B-cells and rapid onset of disease.¹
- First-line treatment of adult patients with Philadelphia negative (Ph-) and minimal residual disease (MRD) negative B-ALL consists of three successive phases of intensive chemotherapy-based regimens : induction, consolidation +/- hematopoietic stem cell transplantation (HSCT), and maintenance (in patients without prior HSCT).²⁻³
- Despite achieving hematological complete remission (CR), defined as the absence of leukemia cells in the blood/bone marrow after induction therapy, MRD may remain detectable using flow cytometry or polymerase chain reaction (PCR).⁴⁻⁶
- Thus, among patients achieving CR after 1st line treatment, 15% to 20% of patients will relapse⁷ and the 5-year overall survival (OS) is estimated to range between 60% to 70%.⁸
- In the E1910 ECOG phase III randomized, controlled trial, blinatumomab in addition to consolidation regimen demonstrated a significant increase in OS versus standard consolidation chemotherapy (chemo) alone (hazard ratio [HR]: 0.44; 95% confidence interval [CI]: [0.25; 0.76]; p= 0.003).⁹

OBJECTIVE

- To assess the cost-effectiveness of blinatumomab + chemotherapy versus standard chemo in France in line with French HTA guidelines and methodology.

RESULTS

- The incremental cost-utility ratio (ICUR) of blinatumomab + chemo vs standard chemo was €39,273 per quality adjusted life year (QALY) gained (Table 1). The ICER was €29,300 per life year (LY). Blinatumomab + chemo was associated with 4.30 additional QALYs compared to standard chemo alone (13.80 vs 9.50), and an incremental cost of €168,754 (€327,581 vs €158,827) over a lifetime horizon (50 years).

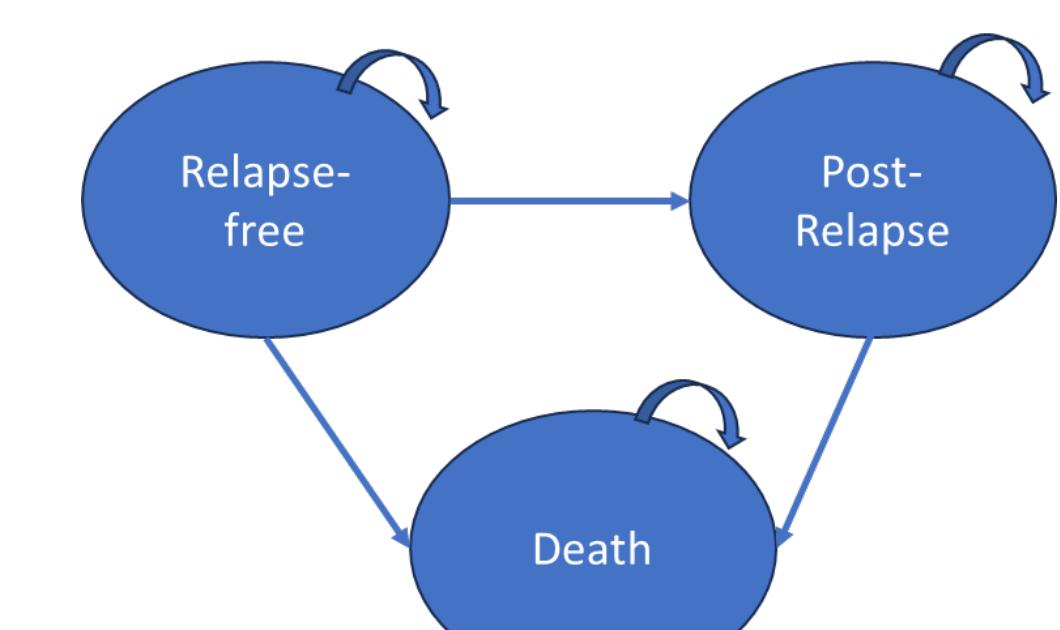
Table 1 : Total costs and QALYs (main analysis)

Intervention	Total costs (€)	Total LY	Total QALYs	ICER (€/Life year)	ICUR (€/QALY)
Standard chemo	€158,827	19.50	9.50	-	-
Blinatumomab + chemo	€327,581	13.48	13.80	€29,300	€39,273
Difference	€168,754	5.76	4.30	-	-

- Among the total cost associated with blinatumomab + chemo, the drug acquisition costs (59%) were the main drivers, followed by administration cost of consolidation treatments (15%), and costs of subsequent post-relapse treatments (10%). For standard chemo, the main driver was the cost of treatments used after relapse (46% of the total cost), cost of HSCT pre- and post-relapse (14%), and administration costs of consolidation treatments (12%). Breakdowns of costs are shown in Table 2.
- Acquisition cost of chemotherapy was close to zero (€75, due to the dispensing fee in the hospital pharmacy) because chemotherapy cost used in consolidation are included in hospital administration tariffs. Savings were observed with blinatumomab + chemo treatment, mainly on costs associated with post-relapse subsequent therapy drug acquisition (- 36,400€), administration (- 5,541€) and HSCT costs (- 2,359€ pre-relapse and -980€ post-relapse), not compensating costs expense in 1st line.

Table 2 : Cost breakdown (main analysis)

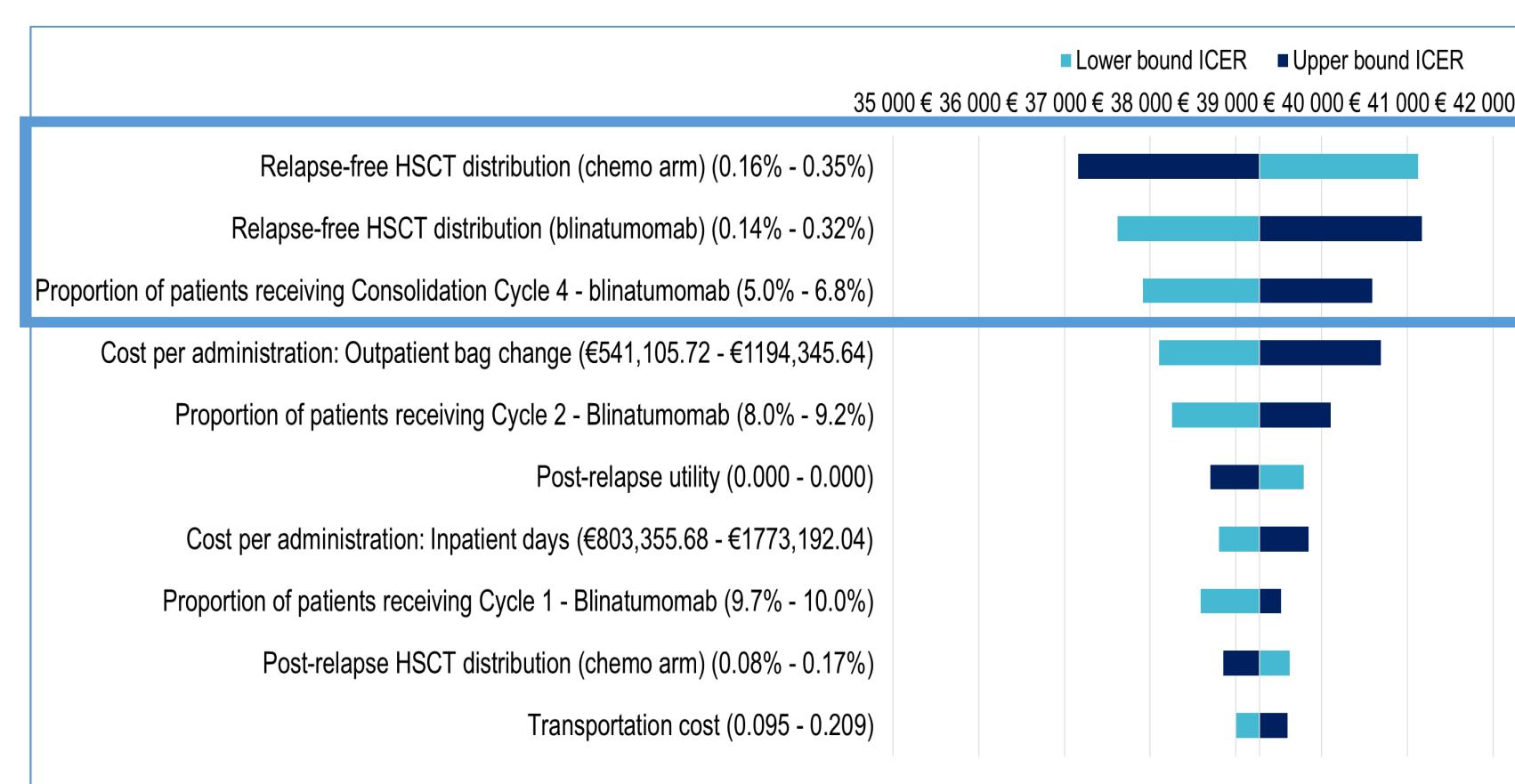
Costs item	Blinatumomab + chemo	Chemo	Difference
Costs in relapse-free state (1 st line consolidation)			
Total costs in relapse free-state include:	€268,862	€59,023	€209,839
Drug acquisition costs	€184,395	€75	€184,320
Administration costs for consolidation treatment	€47,817	€19,368	€28,448
Administration and acquisition costs in maintenance	€5,047	€5,426	- €380
Adverse events costs	€11,956	€12,147	- €191
Pre-relapse HSCT costs	€19,648	€22,007	- €2,359
Costs in relapse state			
Total costs in relapse state include:	€41,992	€86,234	- €44,242
Acquisition costs of subsequent post-relapse treatment	€31,045	€67,445	- €36,400
Administration costs of subsequent treatment	€6,484	€12,025	- €5,541
Post-relapse HSCT costs	€3,264	€4,244	- €980
Other cost items			
End of life costs	€1,198	€2,519	- €1,321
Follow up costs	€16,727	€13,570	€3,158


CONCLUSIONS

- Blinatumomab added to consolidation chemotherapy for the treatment of Ph- MRD- B-ALL is a cost-effective option compared to standard chemotherapy with the recently published ICUR in France (€147,093/QALY to € 201,398/QALY).¹³ Incremental costs were €90,839 in the relapse-free state, partially offset by a saving of €44,242 in the relapse state, due to blinatumomab preventing relapse and subsequent costly treatments.
- Consistency across the results of the sensitivity analyses supports the robustness of the model and the estimated long-term survival extrapolations. Long-term outcomes (up to 4.5 years of follow-up) showing an important proportion of long-term survivors in the blinatumomab + chemo arm restrain uncertainty around lifetime extrapolation.
- While no quality-of-life data were collected in the E1910 trial, health state utilities were not identified as major drivers of uncertainty in the sensitivity analyses. Uncertainty was further reduced by leveraging real-world quality of life data in a French population, with similar patient characteristics to the E1910 trial population.
- This cost-effectiveness analysis demonstrated that the addition of blinatumomab to consolidation chemotherapy compared to consolidation chemotherapy alone is a cost-effective option in adult patients in MRD-negative remission from B-ALL from the French healthcare and societal perspective.

METHOD

- The incremental cost-effectiveness ratio (ICER) was estimated using a three-state (relapse-free, post-relapse and death) partitioned survival model that was developed to extrapolate clinical outcomes, quality of life, and treatment-related costs for patients with Ph- B-ALL who received consolidation with blinatumomab + chemo-versus standard chemo over a 50-year lifetime horizon (Figure 1).
- Costs of drug acquisition and administration in consolidation, maintenance, and upon relapse; medical follow-up; and adverse event-related hospitalizations were estimated from the French payer perspective in 2024 Euros (€).
- Health state utilities were estimated from a French real-world study that collected quality of life (EQ-5D-3L with French tariffs) between 30 March 2018 and 18 January 2019 in 219 French patients with B-ALL.¹⁰ Patients remaining relapse-free after 5 years were assumed to have the same utility as the general population.
- Extrapolations of relapse-free survival (RFS) and OS data for both treatment arms were performed using patient-level data from the E1910 trial.⁹ Extrapolation selection was done according to NICE decisions support unit (DSU).¹²
- Mixture-cure models (MCMs) were used for both arms :
 - MCMs are useful to describe survival data where a subgroup of patients experiences long-term survival, as treatment of B-ALL can induce deep remission thereby leading to improved OS. This was the case in E1910 trial as a plateau in the Kaplan-Meier curves of RFS of Blinatumomab plus chemo and chemo alone emerges from 48 and 72 months onwards, respectively, where patients are no longer relapsing and dying.
 - Long-term survival was modelled by estimating an implicit 'cure fraction' (i.e. the proportion of cured patients). Cured patient survival was then modelled assuming age- and sex-matched general population mortality. To account for any residual ALL complications and treatments (e.g. allogeneic SCT), a standardized mortality ratio (SMR) of 1.09¹¹ was applied to the general population mortality.
 - This model was previously submitted to the French HTA (CEESP, Comité Economique et de Santé Publique) in February 2025.


Figure 1 : Structure of the partitioned survival model

SENSITIVITY AND SCENARIO ANALYSES

- The deterministic sensitivity analysis (64 parameters tested) showed that parameters with the most impact on the ICUR were the distribution of HSCT in the relapse-free state (for both treatment arms) and the proportion of patients receiving blinatumomab (Figure 2). Overall, ICUR variations were acceptable and did not exceed +/- 5% (€37,158; €41,171).

Figure 2 : Tornado diagram

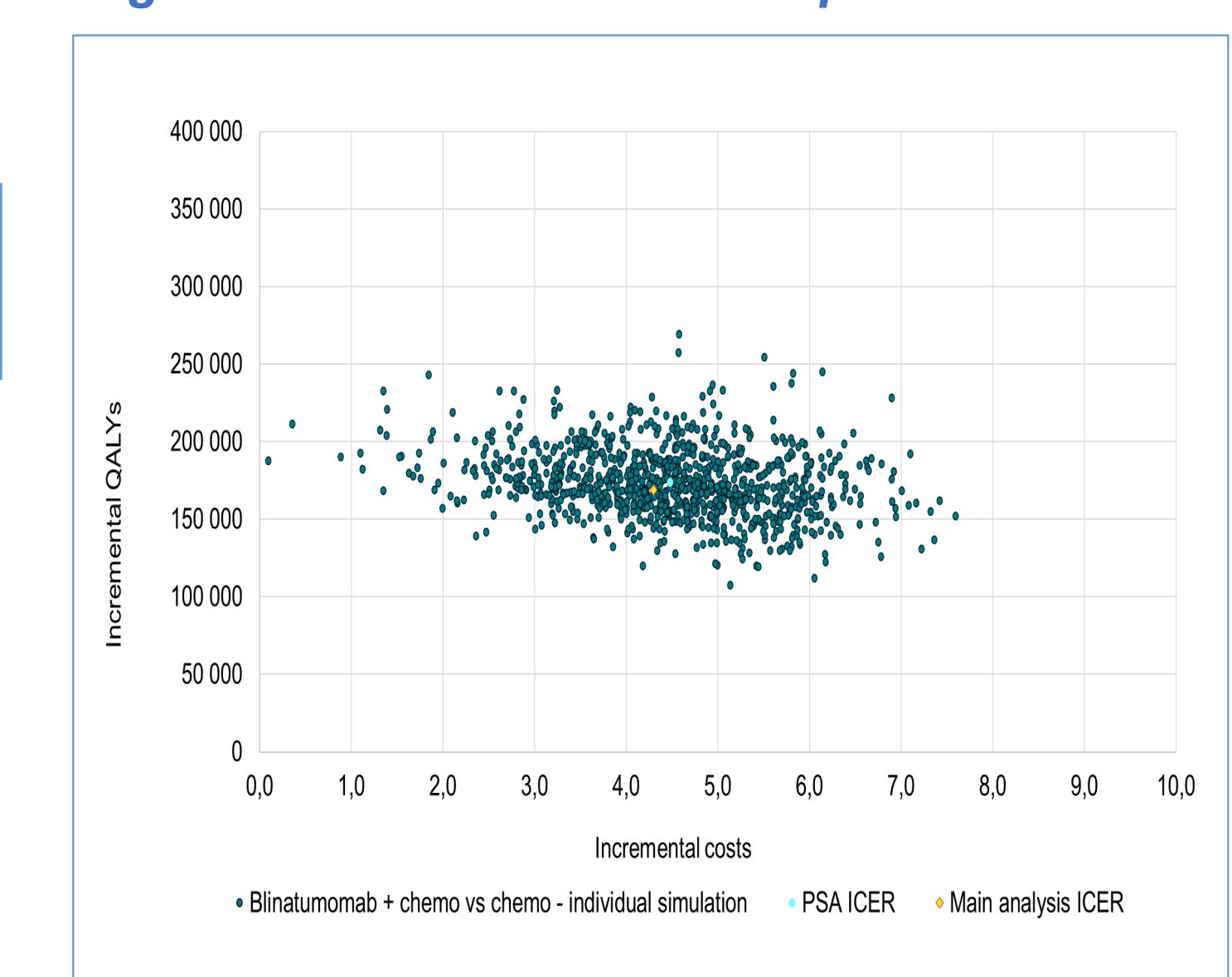

- Acceptability curve representation of probabilistic results shows that blinatumomab plus chemo versus chemo alone has an 80% probability of being cost-effective at a willingness-to-pay threshold of €52,000 per QALY (Figure 4).

Figure 4 : Acceptability curves

- In the probabilistic sensitivity analysis (PSA), blinatumomab + chemo is more effective and more costly than standard chemo alone across all simulations (1000 iterations), with a mean probabilistic ICUR of 30,543 (Figure 3).

Figure 3 : Cost-effectiveness plan

- Several scenario analyses were also conducted. Scenarios having the most impact on ICER were:
 - Reduction of time horizon to 30 years (€48,059/QALY; +22%)
 - Actualization rate of costs and health benefits set to 4.5% instead of 2.5% (€26,388/QALY; -33%)
 - Actualization rate of costs and health benefits set to 0.0% instead of 2.5% (€56,679/QALY; +44%)
 - A 7-year relapse-free delay (instead of 5) to consider patients cured (€39,760/QALY; +1%)
 - Exclusion of post-relapse treatments (€49,034/QALY; +25%)

REFERENCES

- Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. *Mediterr J Hematol Infect Dis* 2014;6:e2014073.
- Lenmyr EB, Karlsson K, Abrahamsson M, et al. Introducing patient-reported outcome in the acute leukemia quality registries in Sweden. *Eur J Haematol* 2020;104:571-580.
- Hoelzer D, et al. ESMO Clinical Practice Guideline interim update on the use of targeted therapy in acute lymphoblastic leukaemia. *Annals of Oncology* 2024;35(1):15-28.
- Gökbuget N, el al. Management of ALL in Adults: 2023 ELN Recommendations from a European Expert Panel. *Blood*. 2024.
- Berry DA, Zhou S, Higley H, et al. Association of Minimal Residual Disease With Clinical Outcome in Pediatric and Adult Acute Lymphoblastic Leukemia: A Meta-analysis. *JAMA Oncology* 2017;3:e170580-e170580.
- Gökbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. *Blood* 2020;120:1868-1876.
- Campagna D. Minimal residual disease in acute lymphoblastic leukemia. *Hematology Am Soc Hematol Educ Program* 2010;7-12.
- Locatelli F, et al. How I treat relapsed childhood acute lymphoblastic leukemia. *Blood* 2012;120:423-38.
- Litzow MR, Sun Z, Mattison RJ, Paietta EM, Roberts KG, Zhang Y, et al. Blinatumomab for MRD-Negative Acute Lymphoblastic Leukemia in Adults. *New England Journal of Medicine* 2024;391(4):320-33.
- Leprete S, Touboul C, Filois A, et al. Quality of life in adults with acute lymphoblastic leukemia in France: results from a French cross-sectional study. *Leuk Lymphoma*. 2021;62(12):2957-2967.
- Maurer MJ, Ghesquière H, Jais JP, et al. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunotherapy. *J Clin Oncol* 2014;32:1066-73.
- Latimer N. NICE DSU Technical Support Document 14: Undertaking survival analysis for economic evaluations alongside clinical trials - extrapolation with patient-level data. 2011. Available from <http://www.nicedsuh.org.uk>
- Téhard B, Detourneau B, Borget I, Roze S, De Pouvreuil G. Value of a QALY for France: A New Approach to Propose Acceptable Reference Values. *Value Health*. 2020;23(8):985-993. doi:10.1016/j.jval.2020.04.001

FUNDING DECLARATION

JC and GL are employees of PHE which received funding from Amgen SAS to perform this analysis. BM is AMGEN SAS employee and owns AMGEN stocks.

CONTACT: bmazaley@amgen.com