

The fiscal case for COVID-19 vaccination: a UK treasury perspective

George Bray¹, Simon Brassel¹, Jingyan Yang², Charlotte Leversha³, Cale Harrison³, Tianyan Hu², Margherita Neri¹, Lotte Steuten¹

¹Office of Health Economics, London, UK ²Pfizer Inc., New York ³Pfizer, UK

INTRODUCTION

- The COVID-19 pandemic had significant impact on the health of the UK population and its wider economy. Whilst COVID-19 continues to circulate amongst the British population, semi-annual vaccination remains in place for certain risk groups and has been found to generate public health benefits as well as societal value in terms of productivity benefits (Harrison et al., 2024).
- However, increasing levels of public debt and current geopolitical circumstances add pressure on public health budgets and eligibility for vaccination is increasingly restricted to smaller population groups at higher risk of severe outcomes (e.g., elderly, clinical risk groups).
- While the general link between the health and the wealth of a nation is well established and adverse changes in population health are projected to significantly increase the future fiscal deficit in the UK (OBR 2024), the fiscal impact of the COVID-19 immunisation programme on the Treasury's accounts is unknown.
- This study therefore estimates the fiscal return on investment (ROI) of current COVID-19 vaccination coverage when compared to a no vaccination scenario across four working-age population groups aged 18-64:

1. Not in clinical risk groups (not at-risk, NAR), 2. In clinical risk groups (at-risk, AR), 3. Health and social care workers (HCW), 4. Informal caregivers (ICG)

METHODS

- We developed a de novo Fiscal Health Model linking a multi-cohort Markov model with three disease states -susceptible, infected, and long COVID (symptoms >6 months post-infection) - to five fiscal states to assess the impact of COVID-19 vaccination on Treasury inflows and outflows.
- A short-term decision tree was incorporated within the infected Markov state to capture different clinical outcomes associated with each infection. These outcomes determined transitions out of the infected state.
- The disease model used input data covering both the Delta and Omicron periods (Harrison et al., 2024; UKHSA, 2024) and incorporated real-world vaccine effectiveness based on the 2023/2024 season (Rudolph et al., 2025; Nguyen et al., 2025; Appaneal et al., 2024).
- Each health state was linked to five fiscal states - full-time employed, part-time employed, unemployed, economically inactive, and retirement after pension age - using employment proportions from ONS (2022; 2024). Individuals with long COVID were more likely to be economically inactive (ONS, 2022). Infection and its long-term effects could also increase absenteeism.
- Fiscal states determined which benefit and pension payments applied, while disease states determined NHS health care costs.
- Time spent in each health-fiscal state combination determined fiscal streams (see **figure 1**) over an individual's working-age (excluding retirement) and total lifetime (including retirement). Lower infection rates led to higher employment, fewer sick days, and greater income tax contributions.
- Main outcomes were the fiscal benefit-cost ratio (fBCR) and net fiscal benefit (fNB), expressed in 2023 prices (£) and discounted at 3.5%.

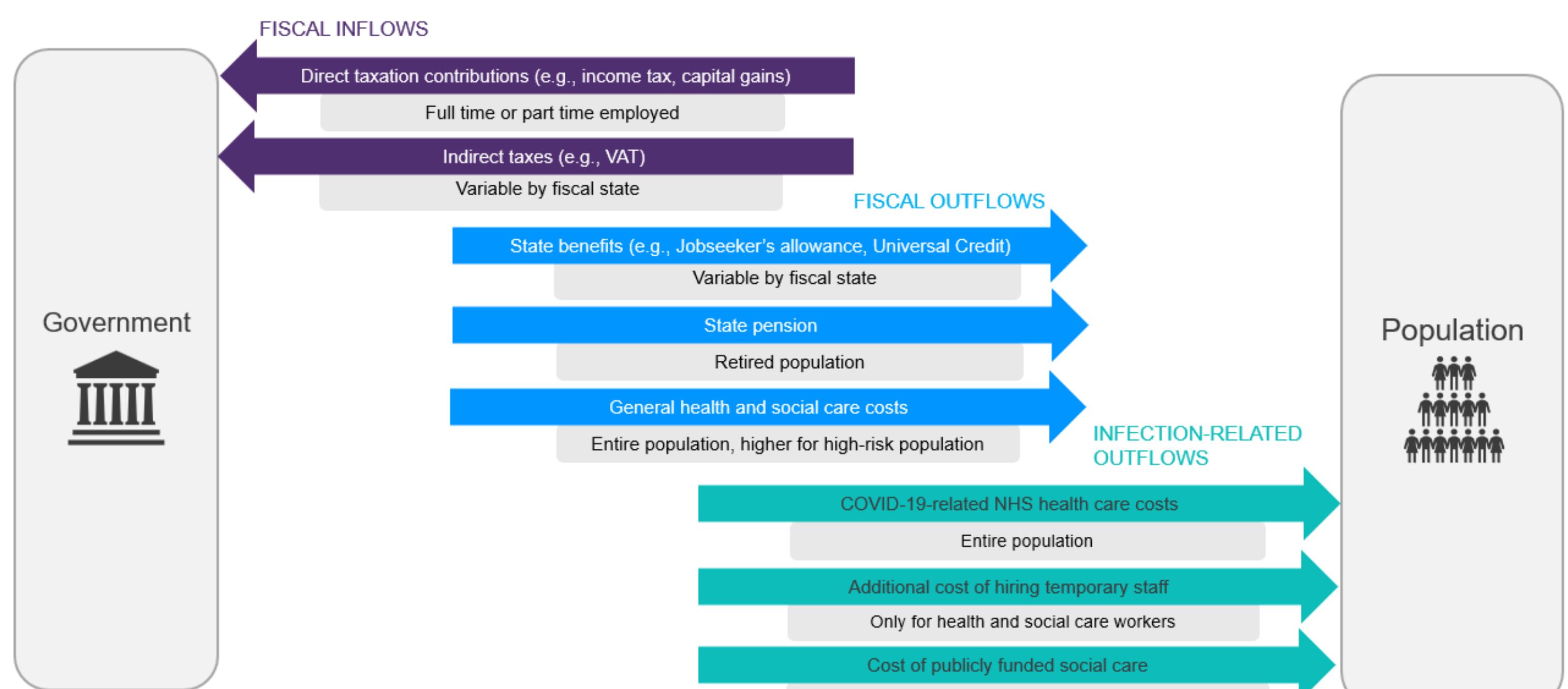


FIGURE 1: ILLUSTRATION OF FISCAL STREAMS INCLUDED IN MODEL

RESULTS

TABLE 1: FBCRS AND FNBS FOR EACH POPULATION GROUP ACROSS DIFFERENT TIME HORIZONS

	5-year		Working-age lifetime		Total lifetime	
	Fiscal Return per £1 spent	fNB	Fiscal Return per £1 spent	fNB	Fiscal Return per £1 spent	fNB
NAR	£0.65	£214.5M	£0.98	£24.4M	£0.41	£1.7B
AR	£1.05	£26.4M	£1.32	£266.8M	£0.35	£1.1B
HCW	£1.06	£9.3M	£1.46	£144.8M	£0.94	£27.6M
ICG	£1.23	£55.3M	£1.54	£212.8M	£0.82	£131.0M

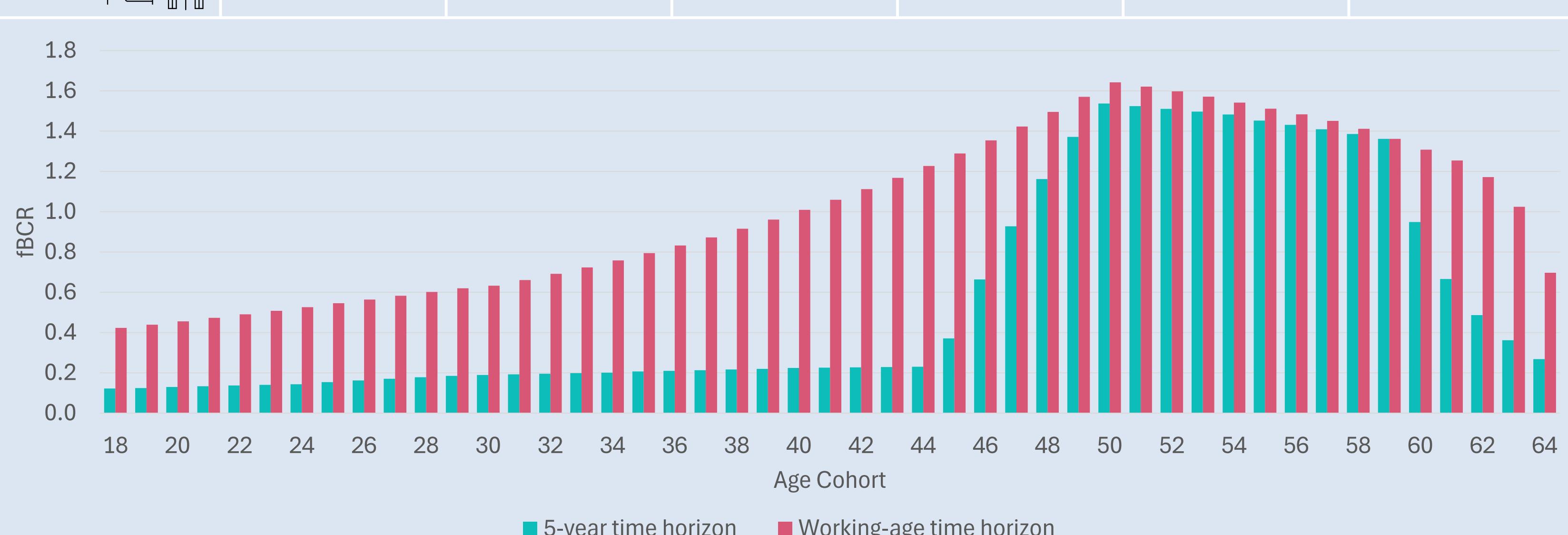


FIGURE 2: DISCOUNTED FBCR BY AGE GROUP FOR 18-64-YEAR-OLD NOT AT-RISK COHORTS

Conclusions

- COVID-19 vaccination of 18-64-year-olds generates a positive fiscal ROI to the UK Treasury, notably among HCW, informal caregivers, and people AR, which accumulates quickly and decreases after retirement age.
- This fiscal health analysis complements standard cost-effectiveness analysis and provides evidence to support public funding of COVID-19 vaccination for the UK government. Within 5 years, fiscal returns 65% of the costs with vaccination everyone NAR are recouped, while a return between +5% and +23% can be achieved for vaccinating those AR or those who provide formal and informal care.
- The results show a lower ROI when considering the total lifetime, due to the impact of pensions and lower tax contributions for those who enter retirement (longevity-related fiscal costs).
- A limitation of our analysis is it does not consider how parameters may evolve over time. For example, retirement age may increase over time so younger cohorts in the model will on average work longer, meaning we may be underestimating the potential future benefits of vaccination and/or underestimate the future spending power of future older adult cohorts.
- Fiscal Health Model can provide a valuable perspective of the actual impact of vaccination in general and highlights the positive impact of COVID-19 immunisation on the fiscal sustainability in the UK.**

REFERENCES

- Appaneal, H.J., Lopes, V.V., Puzniak, L., Zasowski, E.J., Jodar, L., McLaughlin, J.M., and Caffrey, A.R., 2024. Early effectiveness of the BNT162b2 KP2 vaccine against COVID-19 in the US Veterans Affairs Healthcare System. *10.1101/2024.12.26.24319566*.
- Harrison, C., Buffield, R., Yarnoff, B. and Yang, J., 2024. Modeling the potential public health and economic impact of different COVID-19 booster dose vaccination strategies with an adapted vaccine in the United Kingdom. *Expert Review of Vaccines*, 23(1), pp.730-739.
- Nguyen, J.L., et al., 2025. Effectiveness of the BNT162b2 XBB 1.5-adapted vaccine against COVID-19 hospitalization related to the JN.1 variant in Europe: a test-negative case-control study using the id.DRIVE platform. *eClinicalMedicine*, [online] 79. 10.1016/j.eclim.2024.102995.
- Office for Budget Responsibility, 2024. *Fiscal Risks and Sustainability*. September 2024.
- ONS, 2024. *Previous releases for Labour market overview, UK - Office for National Statistics*. [online] Available at: <https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/uklabourmarket/previousreleases> [Accessed 10 Oct. 2025].
- Rudolph, C., Khan, F.L., Sun, X., Lupton, L.L., Puzniak, L.A., Jodar, L. and McLaughlin, J.M., 2025. Receipt of BNT162b2 KP2 Vaccine and COVID-19 CVS MinuteClinic Visits in US Adults. *10.1101/2025.01.15.24319342*.
- UKHSA, 2024. *Winter Coronavirus (COVID-19) Infection Study: estimates of epidemiological characteristics, England and Scotland: 2023 to 2024*. [online] GOV.UK. Available at: <https://www.gov.uk/government/statistics/winter-coronavirus-covid-19-infection-study-estimates-of-epidemiological-characteristics-england-and-scotland-2023-to-2024> [Accessed 9 Oct. 2025].

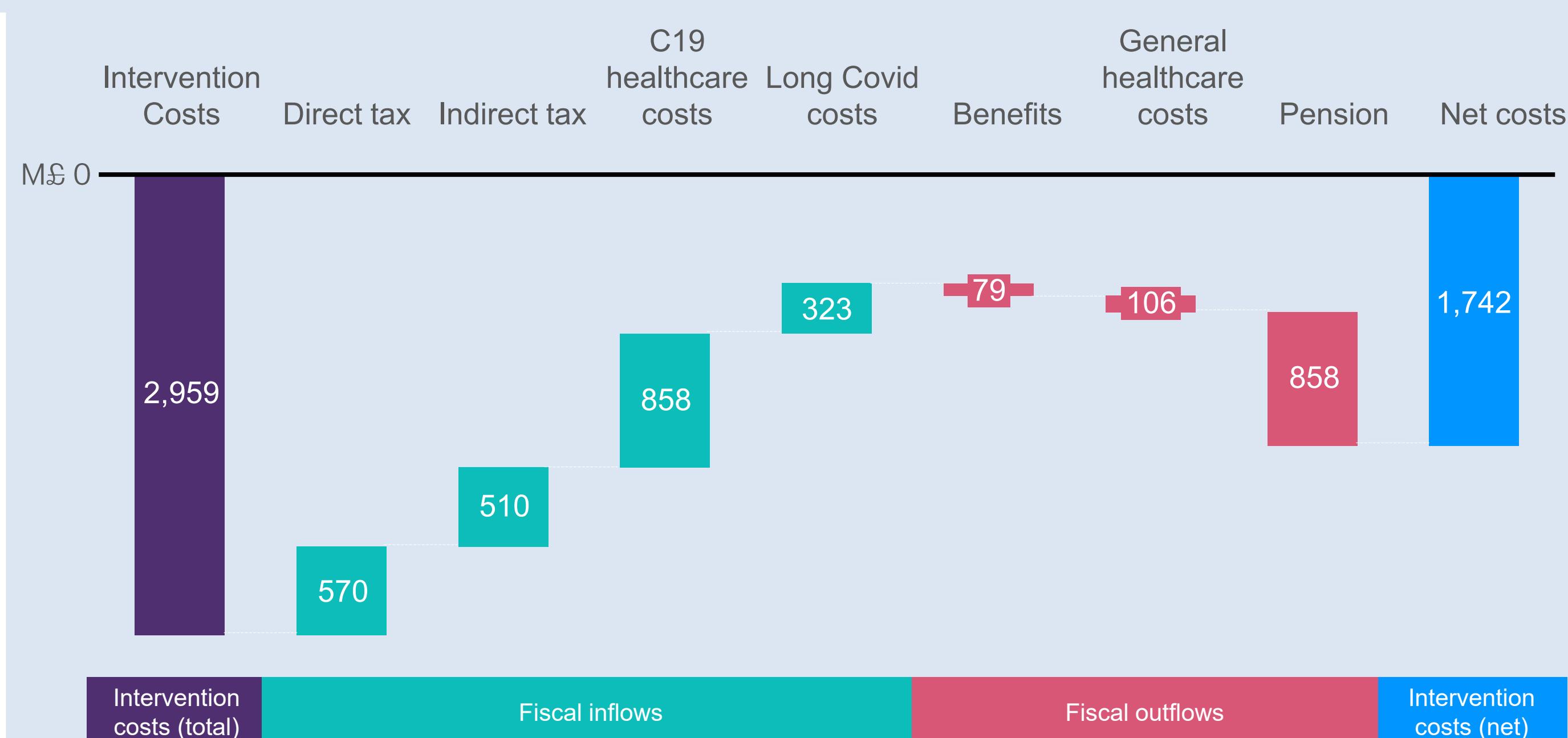


FIGURE 3: FISCAL STREAMS FOR 18-64-YEAR-OLD NOT AT-RISK COHORTS IN £ MILLION.

DISCLOSURES

This study was sponsored by Pfizer. JY, CL, CH and TY are employees of Pfizer and may own Pfizer stock.

Contact: George Bray, gbray@ohe.org
Office of Health Economics, London, UK