

IDENTIFYING DOGS TO BE SCREENED FOR CANINE CHRONIC KIDNEY DISEASE (cCKD)

A.K. Wright¹, I. Chortara², G. Valiakos³, C.N. Tsokana⁴, I. Chatzipanagiotidou³, A. Batsidis⁵, P. Economou⁶, T.L. Sandri¹

¹Global Medical Affairs, Zoetis Inc., Parsippany, NJ, USA

²Asclepius One Health Platform, Athens, Greece

³Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece

⁴School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁵Department of Mathematics, University of Ioannina, Ioannina, Greece

⁶Department of Civil Engineering (Statistics), University of Patras, Patras, Greece

ABSTRACT

Canine chronic kidney disease (cCKD) is a condition that progresses over time and is frequently identified in its later stages. This study aimed to develop and validate a screening tool for cCKD, utilizing eight clinical and laboratory criteria to support early diagnosis.

INTRODUCTION

Canine Chronic Kidney Disease (cCKD) is a multifactorial disease characterized by persistent renal abnormalities, affecting up to 10% of geriatric dogs¹. Diagnosis depends on evaluating simultaneously multiple biomarkers (serum creatinine, SDMA, and UP/C ratio), medical history, patient specific risk factors (e.g., age, breed, nutrition, genetics, comorbidities etc.)², combined with physical examination. Despite available tools, early detection remains limited due to the absence of a standardized screening method. This study aims to develop and validate a model combining clinical data and biomarkers to improve early diagnosis.

MATERIALS AND METHODS

Study Design	<ul style="list-style-type: none"> Definition of eight cCKD screening criteria (Table 1) Multicenter prospective Real-World Data collection study in Greece (06/2023-03/2024) Development of data forms (demographics e.g., age, breed, weight, neuter status)
Participants' recruitment	<ul style="list-style-type: none"> Enrollment of dogs ≥ 3 years old meeting ≥ 1 screening criterion Veterinarians from Greece Owner consent
Laboratory analysis	<ul style="list-style-type: none"> Serum samples analysis for renal biomarkers IRIS staging at an ISO 9001-certified lab³
Statistical analysis	<ul style="list-style-type: none"> Non-parametric Mann-Whitney U test for continuous variables Fisher's exact test for categorical diagnostic criteria Multivariable logistic regression model constructed with cCKD diagnosis as the dependent variable

Table 1: The eight screening criteria for cCKD

Description						
1	On a renal diet in the last 12 months					
2	History of Acute Kidney Injury (AKI)					
3	Loss of appetite, unexplained weight loss, or low Body Condition Score					
4a	History of serum creatinine 1.2–2.8 mg/dL (in dogs > 5 yo)					
4b	History of serum phosphate ≥ 3.8 mg/dL (in dogs > 5 yo)					
4c	History of an increasing creatinine trend (in dogs > 5 yo)					
4d	History of increased SDMA with creatinine in reference values (in dogs > 5 yo)					
4e	History of an increasing phosphate trend (in dogs > 5 yo)					
5	Dental disease (in dogs > 4 yo)					
6	History of canine leishmaniosis and/or ehrlichiosis					
7	Diagnosed osteoarthritis, with possible increasing creatinine trend					
8	Breed-specific risk (e.g., Yorkie, Pomeranian > 7 yo or Boxer < 10 yo)					

RESULTS

Demographics

- 46 veterinarians contributed data for 1.034 dogs
- 283 (27.4%) dogs classified as cCKD cases
- Even population distribution by sex
- Mean age: 9.45 years (SD=3.4)
- Mean body weight: 18.85 kg (SD=12.23)

Univariate analysis:

- Age was significantly higher in dogs diagnosed with cCKD ($p < 0.001$)
- Renal diet ($p < 0.001$), AKI ($p < 0.001$), loss of weight/appetite ($p = 0.002$), elevated creatinine/phosphate levels ($p < 0.001$), increasing creatinine trend ($p < 0.001$), increased SDMA ($p = 0.007$), dental disease ($p < 0.001$), and osteoarthritis ($p < 0.001$) were significantly associated with cCKD cases ($p < 0.05$).

Multivariate analysis (Logistic regression model):

Age and 6 screening criteria identified as significant predictors (Table 2).

- Increasing creatinine trend was the strongest predictor, followed by renal diet history and prior creatinine levels of 1.2–2.8 mg/dL.
- Effect of age was moderated by a significant interaction with dental disease: for individuals without dental disease, each year of age increases the odds by approximately 9.4%, whereas for those with dental disease, the age effect is reduced to approximately 4.4% per year.

Model's discriminative performance:

- Up to 80.9% overall accuracy depending on the cut-off used (Table 3).

Table 2: Multivariable Logistic Regression Model for Predicting the Diagnosis of cCKD

Predictor Variable	B	S.E.	Wald	df	Sig.	Exp(B)	95% C.I. for EXP(B)
Main effects							
Age (Years)	.08	.03	10.24	1	.001	1.09	1.04 - 1.15
Renal Diet	1.54	.24	41.24	1	<.001	4.67	2.924 - 7.50
Acute Kidney Injury	.69	.31	5.07	1	.024	2.00	1.09 - 3.68
Appetite/Weight Loss	.68	.24	7.73	1	.005	1.97	1.22 - 3.20
Creatinine 1.2–2.8 mg/dL	1.34	.20	44.25	1	<.001	3.85	2.59 - 5.73
Increasing Creatinine	2.41	.33	54.52	1	<.001	11.18	5.89 - 21.22
Leishmaniosis /Ehrlichiosis	.56	.19	8.62	1	.003	1.75	1.20 - 2.54
Interaction Term							
Age by Dental Disease	-.04	.018	6.61	1	.010	.95	.92- .99
Constant	-2.78	.32	77.39	1	<.001	.06	

Table 3: Model Classification Performance and Key Metrics at Three Probability Cut-offs

	Cut-off = 0.500	Cutoff = 0.409	Cutoff = 0.241				
cCKD Model prediction	cCKD Model prediction	cCKD Model prediction					
cCKD	No Yes	No Yes	No Yes				
No	707	44	676	75	599	152	
Yes	157	126	123	160	84	199	
Performance Metrics							
Spec (%)	94.1	90.0	79.8				
Sens (%)	44.5	56.5	70.3				
PPV (%)	74.1	68.1	56.7				
NPV (%)	81.8	84.6	87.7				
Overall Accuracy (%)	80.6	80.9	77.2				

CONCLUSIONS

The developed multivariable model could be used as a practical tool to support early identification of dogs at risk for cCKD → prompt intervention, improved prognosis, and enhanced quality of life for affected dogs

The model uses readily available clinical data and flexible, threshold-based application for different practice needs

For routine screening and early detection: Youden threshold (0.241) is preferable with 70.3% sensitivity

For confirmation: default (0.500) threshold is the most suitable with 94.1% specificity

For balanced routine practice: intermediate threshold (0.409) offers the best compromise with 90% specificity 56.5% sensitivity and the highest overall accuracy (80.9%)

Future work: validation and refinement of this screening model across diverse populations and integration into veterinary software and clinical guidelines.

REFERENCES

zoetis

ACKNOWLEDGMENTS

The authors gratefully acknowledge the veterinarians and pet owners for their valuable participation in this work.