

Cost-Effectiveness of a Connected Injection Device for Pediatric Growth Hormone Deficiency (GHD) in Spain: A Scenario-Based Microsimulation Analysis Using Real-World Data

de Arriba A¹, Roeder C², Nivelle E³, van Dommelen P⁴, Alcón Sáez JJ⁵, Latre Gorbe C⁶, de los Santos Real H⁷, Sánchez-Collado⁷, Boehm F⁸, Masseria C²

¹ Pediatric Endocrinology Unit, Hospital Miguel Servet, Zaragoza University, Zaragoza, Spain; ² AESARA Europe, Zug, Switzerland / Madrid, Spain; ³ SHE, Melbourne, Australia; ⁴ Department of Child Health, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands; ⁵ Consorcio Hospital General Universitario de Valencia, Valencia, Spain; ⁶ Hospital Sant Joan de Déu, Barcelona, Spain; ⁷ Merck, S.L.U., Madrid, Spain (an affiliate of Merck KGaA); ⁸ Merck Healthcare, Darmstadt, Germany

GET POSTER PDF
Copies of this poster obtained through QR (Quick Response) code are for personal use only and may not be reproduced without written permission

CONCLUSIONS

Easypod® vs Non-connected r-hGH devices in pediatric growth hormone deficiency (GHD)

Greater height gains

Lower costs per cm gained

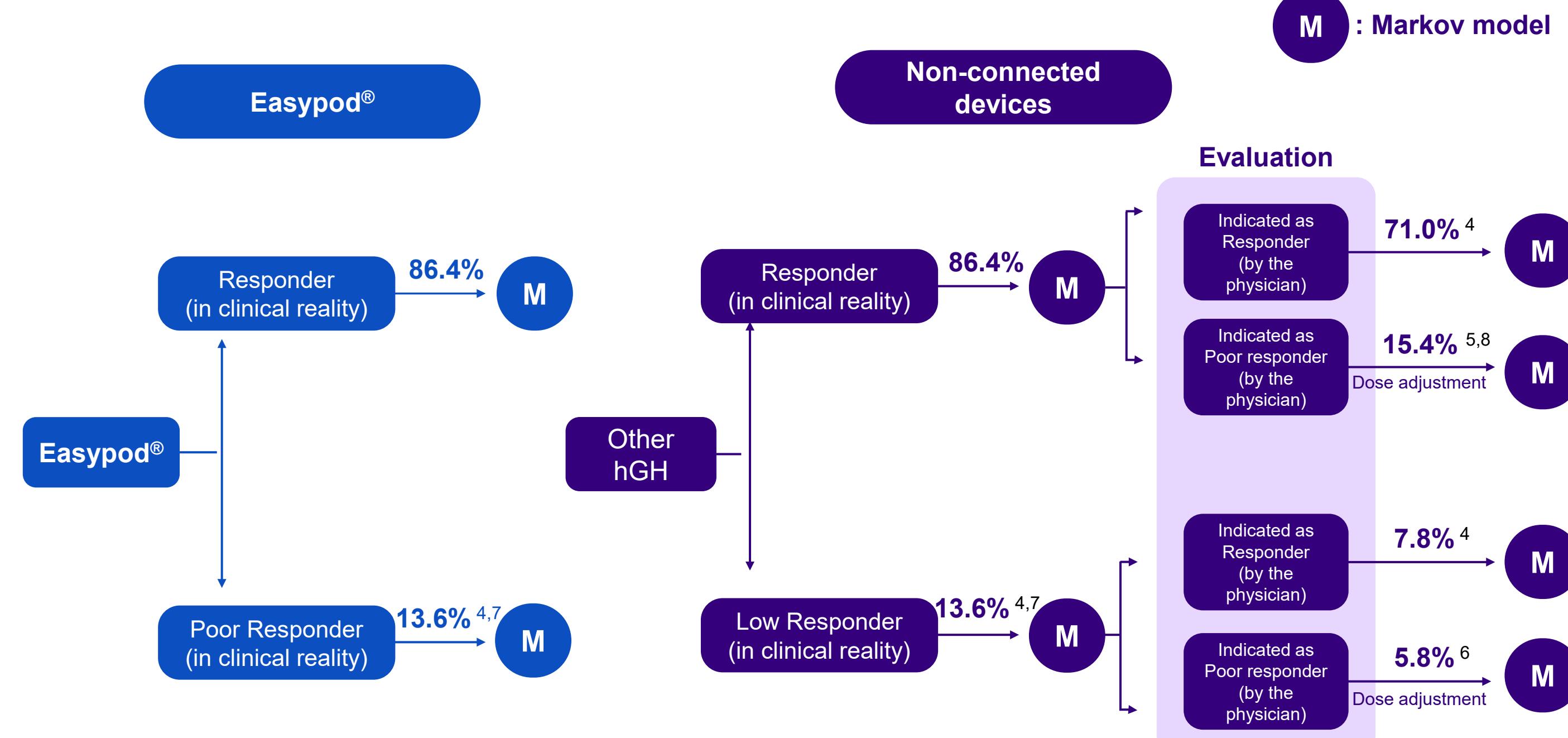
Improved QALYs and efficiency

- Easypod® enables early detection of suboptimal adherence, helping clinicians optimize treatment and avoid unnecessary dose increases.
- Improved adherence leads to better outcomes (3.9 cm height gained) and reduces treatment burden for parents.
- Long-term outcomes and efficiency: Cost-effective within the Spanish NHS threshold, reducing resource use costs and achieving QALY gains.

INTRODUCTION

- Pediatric growth hormone deficiency (GHD) is associated with impaired growth, reduced adult height, and diminished quality of life.¹
- Recombinant human growth hormone (r-hGH) is effective when adherence is maintained, but adherence typically declines over time.^{2,3}
- Easypod®, a connected injection device, records dosing data and enables real-time monitoring of adherence by patients, caregivers, and physicians.⁴
- By distinguishing suboptimal adherence from low biological response, Easypod® helps avoid inappropriate dose escalations and optimizes treatment.⁴

OBJECTIVES


To evaluate the cost-effectiveness of Easypod® versus non-connected devices for pediatric GHD treatment leveraging RWE in Spain.

METHODS

Model type:	Microsimulation of 10,000 pediatric patients (ages 2–13)
Perspective:	Spanish Health System
Time horizon:	Until bone maturation (girls 15 y; boys 17 y)
Structure:	<ul style="list-style-type: none"> Decision tree (treatment response) Markov model (6-month cycles) with 3 adherence states: continuous (>85%), intermittent, discontinuation
Inputs:	<ul style="list-style-type: none"> Easypod® adherence from Spanish Real-World Evidence (RWE)³ Non-connected device adherence extrapolated from RWE⁵ and expert opinion
Adherence-specific scenario analyses:	<ul style="list-style-type: none"> Basecase continuous adherence Easypod from 96% to 80% by year 4; non-connected devices from 75% to 50% Scenario 1: Initial 6 months adherence as per De Pedro et al. with a decline aligned with Easypod® trend (79% → ~61% by Year 4)^{3,5} Scenario 2: First year adherence on average as per De Pedro (79%) with a higher initial adherence for non-connected devices (84% → ~58% by Year 4)⁶
Costs:	Direct medical costs (drugs, visits, monitoring), discounted at 3% annually
Outcomes:	Final height gain (cm), QALYs, ICER, and cost per cm gained

Figure 1. Model Structure: Decision Tree

RESULTS

Base Case

- Easypod® increased final height to **163.0 cm** compared with **159.2 cm** for non-connected devices, corresponding to an incremental gain of **+3.9 cm**.
- The cost per cm gained was **€2,625 with Easypod®** compared with **€3,166 with non-connected devices**, corresponding to a saving of **€541 per cm** (Figure 2).
- The cost per QALY gained with Easypod® was **€27,824**, confirming cost-effectiveness as per Spanish NHS threshold.⁹

Sensitivity and Scenario Analyses

- Easypod® delivered incremental height gains across all scenarios, ranging from **1.3 cm** in patients aged ≥ 12 years to **7.0 cm** in those aged 2–4 years.
- Gains of **3.8–5.0 cm** were also observed under alternative assumptions, including extended time horizons and higher HSDS responses.
- Across all scenarios, the cost per cm gained remained consistently lower with Easypod®, producing savings of **€359–€647 per cm** (Table 2).
- The cost per QALY ranged from **€20,904** in the extended horizon scenario to **€31,261** in the Years 2–4 subgroup.
- The results were robust across sensitivity analysis and scenario analysis. Under **Adherence Scenarios 1 and 2**, Easypod® achieved **3.1–3.2 cm additional height** compared with non-connected devices. These gains translated into cost savings of **€406–€432 per cm**.

Figure 2. Costs per cm Gained

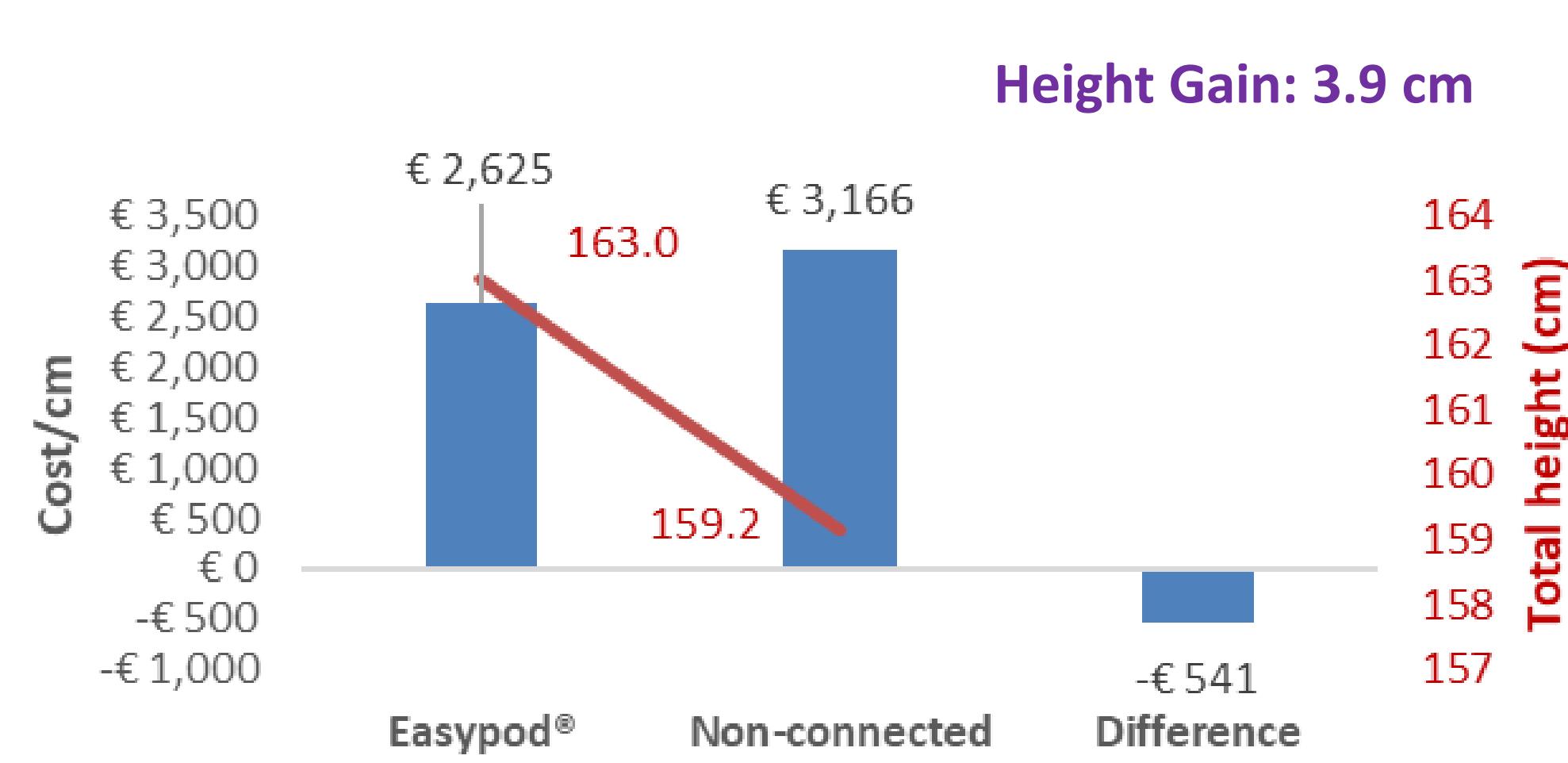


Table 2. Sensitivity and Scenario Analysis

	Difference in cm	Cost per cm Difference (€)	Cost per QALY(€)
Boys (55%)	4.0	€-557	€ 27,945
Time horizon: 17 girls, 19 boys	3.8	€ -560	€ 20,904
Higher HSDS gain	5.0	€ -647	€ 28,471
Years 2 – 4	7.0	€ -559	€ 31,261
Years 5 – 7	4.7	€ -623	€ 27,903
Years 8 – 11	2.9	€ -491	€ 24,767
Years 12+	1.3	€ -359	€ 29,228
Adherence Scenario 1	3.2	€ -432	€ 28,374
Adherence Scenario 2	3.1	€ -406	€ 31,565

Abbreviations: cm, centimeter; €, euro; GHD, growth hormone deficiency; HSDS, height standard deviation score; ICER, incremental cost-effectiveness ratio; NHS, National Health System; QALY, quality-adjusted life year; r-hGH, recombinant human growth hormone; RWE, real-world evidence; y, year. References: ¹Grimberg A, et al. GH/IGF-I treatment guidelines in children. Horm Res Paediatr. 2016;86:361–97. ²Ranke MB, Lindberg A. Growth responses in prepubertal disorders. J Clin Endocrinol Metab. 2010;95:1229–37. ³de Arriba A, et al. Connected device and catch-up growth. Front Endocrinol. 2024;15:1450573. ⁴Alcón Sáez J, et al. Cost-consequence analysis for recombinant human growth hormone treatment administered via different devices in children in Spain. Economía de la Salud. 2022;17:91–107. ⁵De Pedro S, et al. Adherence variability in r-hGH therapy. Growth Horm IGF Res. 2016;26:32–5. ⁶Expert opinion ⁷Carrascosa A, et al. Height gain at adult-height age in 184 short patients treated with growth hormone from prepubertal age to near adult-height age is not related to GH secretory status at GH therapy onset. Horm Res Paediatr. 2013;79:145–56. ⁸Kaspers S, Ranke MB, Han D, et al. Implications of a data-driven approach to treatment with growth hormone in children with growth hormone deficiency and Turner syndrome. Appl Health Econ Health Policy. 2013;11:237–249. ⁹Reckers-Droog V, et al. Willingness to pay for health-related quality of life gains in relation to disease severity and the age of patients. Value Health. 2021;24:1182–1192.

Funding: This study was funded by Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945).

Presented at ISPOR Europe 2025, Glasgow, Scotland, UK, 9–12 November 2025