

The growing importance of reserve antibiotics in organ transplant care and the role of timely appropriate antibiotic treatment to preserve the benefits of prior health investments

Priya Shastri¹, Merel Gijsen², Floortje Van Nooten²
¹Shionogi B.V., London, United Kingdom
²Shionogi B.V., Amsterdam, Netherlands
Contact: Priya Shastri, priya.shastri@shionogi.eu

OBJECTIVE

The growing threat of antimicrobial resistance (AMR) and the increasing prevalence of multi-drug resistant (MDR) infections present significant challenges for kidney organ transplant (SOT) recipients.¹ This review examines the burden of AMR in SOT patients, explores management strategies, and assesses the financial implications, weighing the cost-benefit against the initial investment in SOT.

METHODS

A focused targeted literature review identified 11 publications from a 5-year period (2020-2025) using PubMed and Google Scholar (figure 1). Cost data were extracted from public databases or specific publications on costs.

FIGURE 1: LITERATURE FLOW CHART

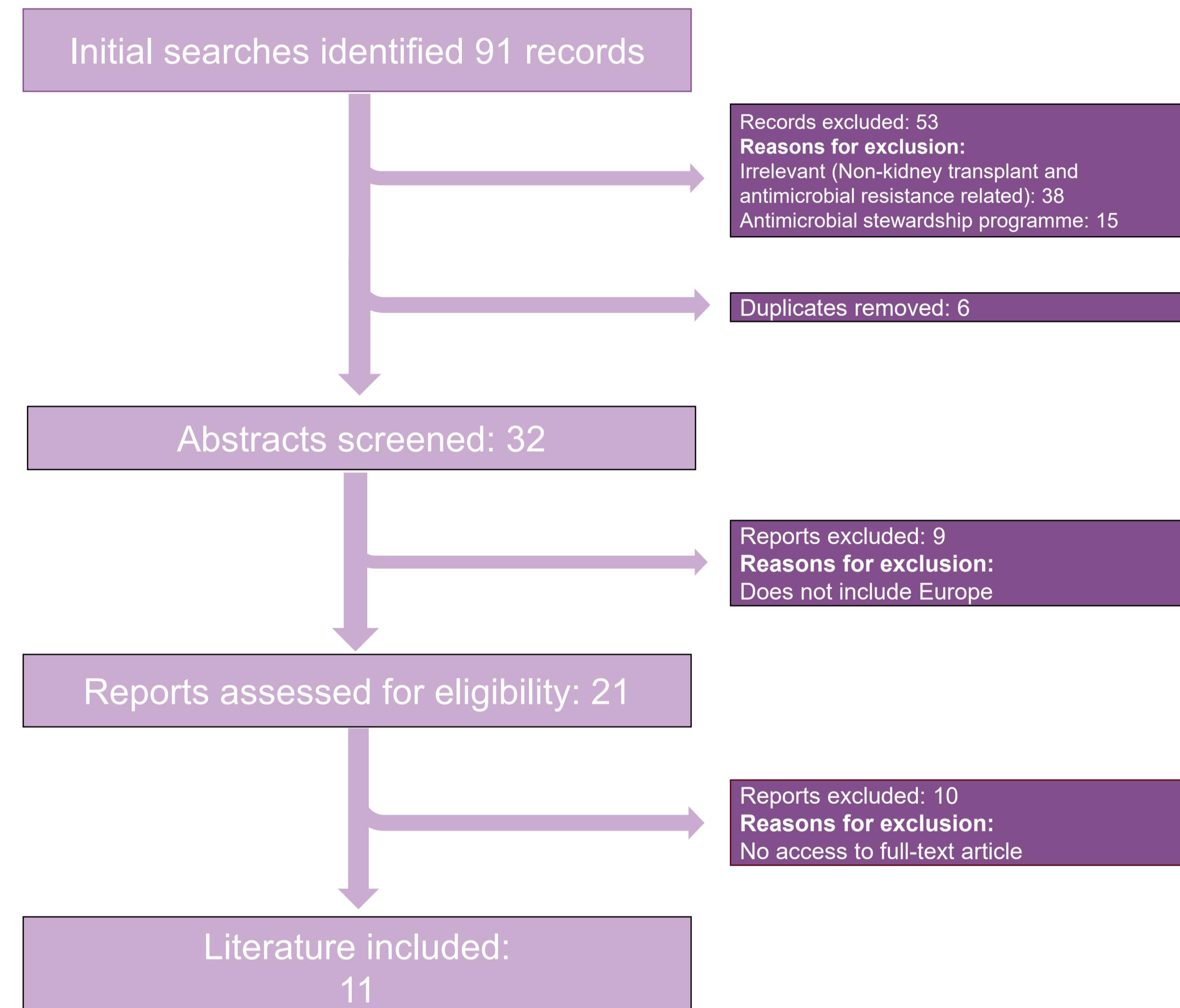
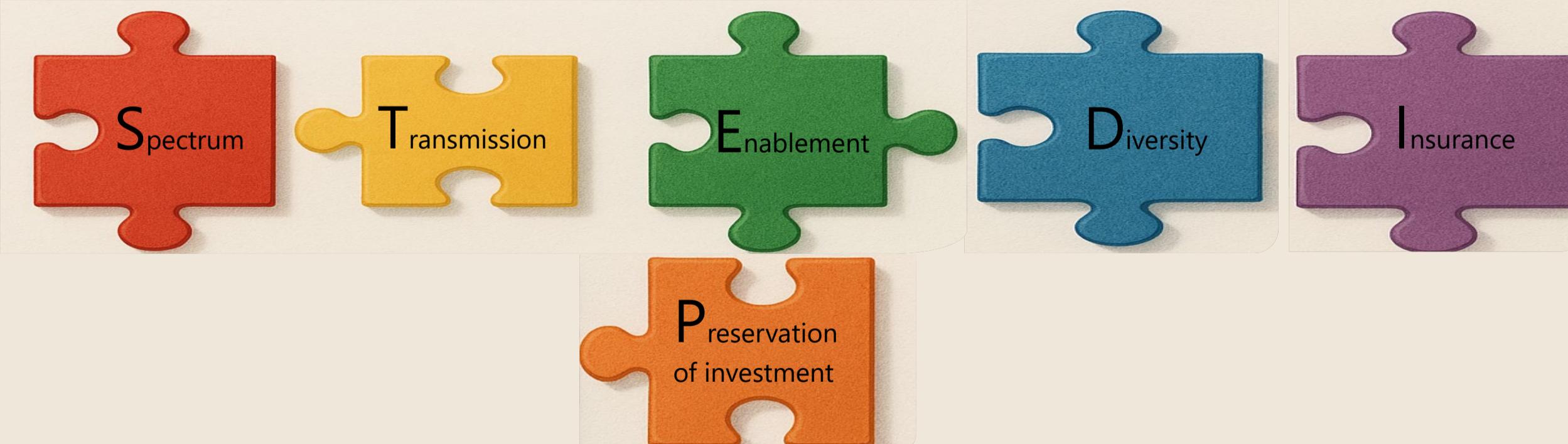



FIGURE 2: STEDI FRAMEWORK WITH ADDED DIMENSION

When prior health investments are considered in MDR infections:

- Early empiric therapy with broad-spectrum antibiotics may be justified for high-risk patients
- Investing in rapid diagnostics can improve outcomes and reduce use of inappropriate antibiotics and hospital stays

CONCLUSIONS

Investing in timely, appropriate antibiotic therapy and diagnostic tools helps preserve the value of prior health investments like SOT. Current value frameworks (e.g., STEDI) may underestimate this dimension of care.

REFERENCES

- 1 Bartoletti M, et al. *Infect Dis Clin North Am.* 2018;32(3):551-580. doi:10.1016/j.idc.2018.04.004
- 2 Freire MP, et al. *Transpl Int.* 2024;37:12469. doi:10.3389/ti.2024.12469
- 3 Mostaghimi T, et al. *Infez Med.* 2023;31(4):466-475. doi:10.53854/lim-3104-5
- 4 Pinchera B, et al. *Microorganisms.* 2024;12(11):2217. doi:10.3390/microorganisms12112217
- 5 Garnacho-Montero J, et al. *Rev Esp Quimioter.* 2025;38(3):197-207. doi:10.37201/req/121.2024
- 6 Bains K, et al. *Anaesthesia & Surgery Open Access Journal.* 2020;2(1). doi: 10.33552/ASOAJ.2020.02.000530
- 7 Bassetti, M, et al. *Int J Antimicrob Agents.* 2020;56(6):106184. doi:10.1016/j.ijantimicag.2020.106184
- 8 Ministerio de Sanidad: https://www.sanidad.gob.es/estadEstudios/sanidadDatos/tablas/tabla24_1.htm. Accessed:16/09/25
- 9 Chronic Kidney Disease in England: The Human and Financial Cost. <https://www.england.nhs.uk/improvement-hub/wp-content/uploads/sites/44/2017/11/Chronic-Kidney-Disease-in-England-The-Human-and-Financial-Cost.pdf> Date accessed:16/09/25
- 10 Dziodzio T, et al. *Transpl Int.* 2019;32(10):1074-1084. doi:10.1111/tri.13463
- 11 Gazzetta Ufficiale; Supplemento ordinario [renderPdf.spring](https://www.gazzettaufficiale.it/rendiPdf.spring) Date accessed: 24/10/25
- 12 Birgand G, et al. 2013;2(1):30. doi:10.1186/2047-2994-2-30
- 13 Vasala A, et al. 2020;10:308. Published 2020 Jul 15. doi:10.3389/fcimb.2020.00308
- 14 Bains K, et al. 2020; 2. doi: 10.33552/ASOAJ.2020.02.000530