

# Bayesian Network Meta-Analysis (NMA) of Weight Loss Efficacy for GLP-1 (Glucagon-like peptide-1) Receptor Agonists and Tirzepatide

CO27

Rishabh D. Pandey, PhD<sup>1</sup>, Prabhakar Pandey, M. Pharm<sup>1</sup>.

<sup>1</sup>SEREXIA CONSULTANCY PVT. LTD.

## INTRODUCTION

- According to the World Obesity Atlas 2023, obesity (BMI  $\geq 25$  kg/m $^2$ ) affected over 2.6 billion people globally in 2020 and is forecasted to exceed 4 billion by 2035 <sup>(1)</sup>.
- GLP-1 receptor agonists (liraglutide, semaglutide) and the dual GLP-1/GIP (glucose-dependent insulinotropic polypeptide) agonist tirzepatide has shown significant weight reduction in clinical trials <sup>(2)</sup>. However, head-to-head studies remain scarce, limiting the availability of comparative effectiveness evidence.
- A Bayesian NMA enables robust statistical framework to perform indirect comparisons across therapies and can yield a single, integrated estimate of their relative weight loss efficacy.

## OBJECTIVE

This Bayesian NMA aims to compare the effectiveness of GLP-1 receptor agonists (liraglutide, semaglutide) and the dual GLP-1/GIP receptor agonist tirzepatide on weight loss.

## METHOD

### Study identification and data extraction:

- A systematic literature search was conducted across PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL).
- The search was restricted to randomized controlled trials (RCTs) and English-language publications.
- Data were extracted on study/trial name, full reference, study design, phase of the study, a summary of the study population characteristics, specific treatments administered, follow-up duration, and the effect size for the primary outcome (mean change in body weight from baseline).

### Network meta-analysis model selection:

- A random-effects model was selected for this NMA considering the heterogeneity across studies. Although a random-effects model captures statistical heterogeneity, it does not automatically account for clinical or methodological differences that could compromise transitivity.

### Bayesian model implementation:

- The Bayesian random-effects NMA was conducted using JAGS in R.
- Vague or non-informative normal priors were assigned for treatment effects and heterogeneity.

### MCMC Simulation and Diagnostics:

- Three MCMC chains were run for 100,000 iterations with 50,000 burn-in.
- Model diagnostics were performed to assess the convergence and the overall quality of posterior samples via trace plots, Gelman-Rubin diagnostics, and effective sample size.

### Output generation:

- Key outputs included pairwise comparisons of treatment with 95% credible intervals (CrI), along with league tables, forest plots, treatment ranking, and Surface Under the Cumulative Ranking Curve (SUCRA) values to summarize the relative weight-loss efficacy across interventions.

## RESULTS

|             | Placebo                 | Liraglutide             | Semaglutide           | Tirzepatide          |
|-------------|-------------------------|-------------------------|-----------------------|----------------------|
| Placebo     | -                       | 5.35 (4.77, 5.95)       | 12.35 (11.66, 13.04)  | 22.10 (21.19, 23.01) |
| Liraglutide | -5.35 (-5.95, -4.77)    | -                       | 7.00 (6.13, 7.87)     | 16.75 (15.82, 17.68) |
| Semaglutide | -12.35 (-13.04, -11.66) | -7.00 (-7.87, -6.13)    | -                     | 9.75 (8.88, 10.61)   |
| Tirzepatide | -22.10 (-23.01, -21.19) | -16.75 (-17.68, -15.82) | -9.75 (-10.61, -8.88) | -                    |

Table 1. Mean difference in weight loss, kg (95% Credible intervals).

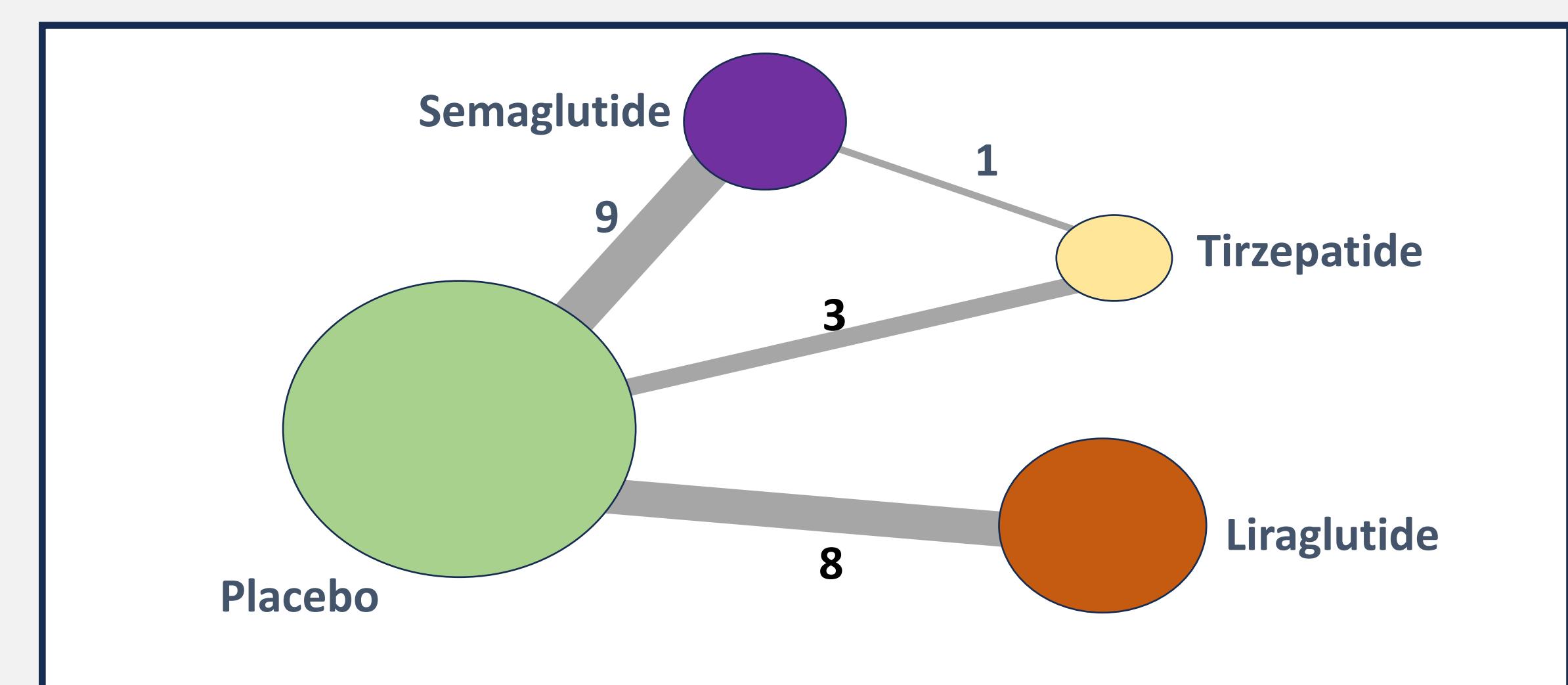



Figure 2. Network of Evidence for Weight Management Agents.

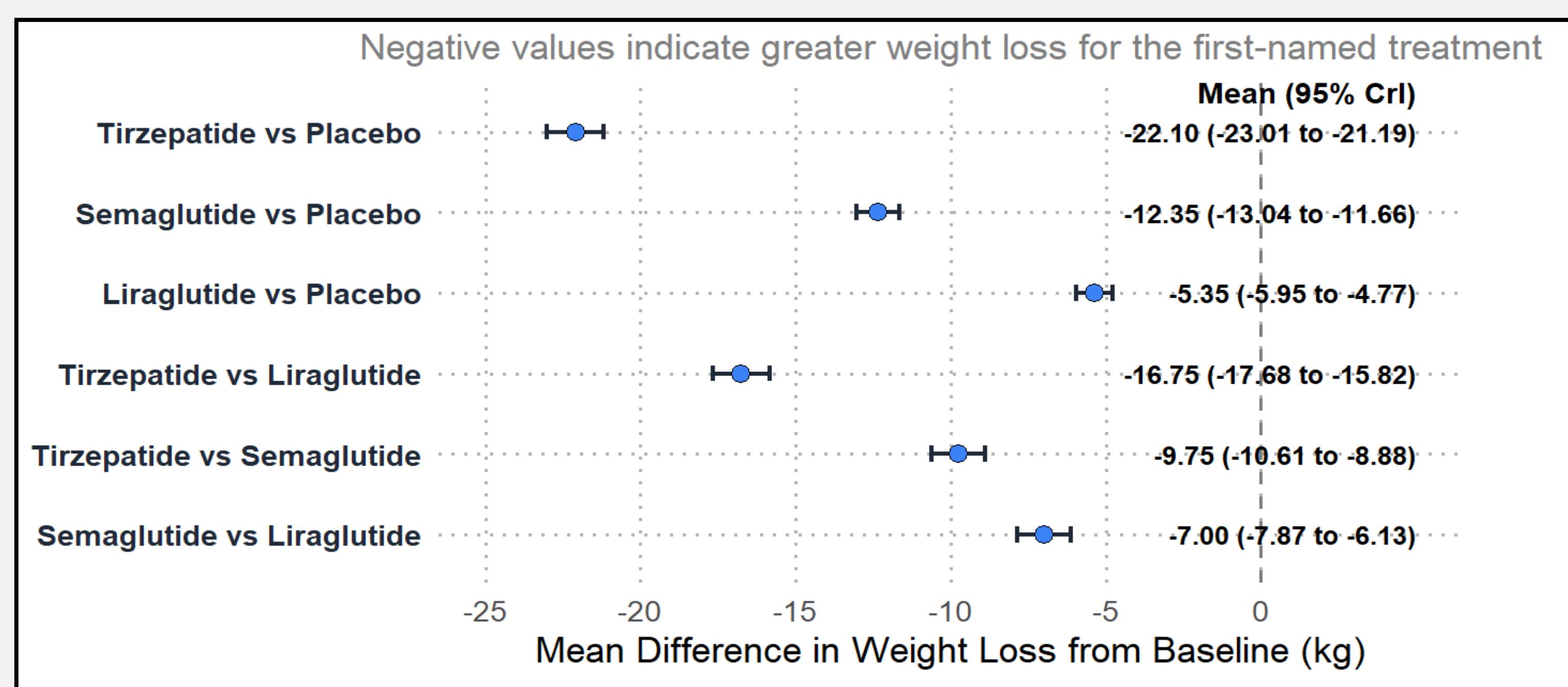



Figure 1. Network Meta-Analysis Forest Plot: Pairwise Mean Difference (kg).

- The network meta-analysis synthesized data from 21 different studies and included 21 treatment comparisons.
- Statistical diagnostics confirmed strong model reliability, with excellent convergence and minimal between-study heterogeneity measured at 0.29 kg (95% credible interval: 0.03 to 1.25 kg).
- Tirzepatide (pooled analysis) resulted in the greatest average weight loss vs. placebo, with a reduction of -22.10 kg (95% CrI: -23.01 to -21.19 kg).
- Semaglutide and Liraglutide also produced substantial weight loss compared to placebo: Semaglutide (-12.35 kg, 95% CrI: -13.04 to -11.66) and Liraglutide (-5.35 kg, 95% CrI: -5.95 to -4.77).
- Across all pairwise comparisons and SUCRA rankings, Tirzepatide consistently emerged as the most effective treatment option for weight loss.

## CONCLUSIONS

In this Bayesian NMA Tirzepatide demonstrated the greatest average weight loss (-22.10 kg (95% CrI: -23.01, -21.19)) compared with liraglutide, semaglutide, dulaglutide, insulin degludec, and placebo. However, the analysis did not account for dose-dependent effects or adjust for differences among patients, which warrants further investigation.

## LIMITATIONS

- This NMA considers a sole endpoint of mean weight loss from baseline and other outcomes such as waist circumference, proportion achieving a certain weight loss threshold, changes in metabolic parameters, adverse events and quality of life were not included.
- Publication bias and Risk of bias assessment weren't conducted.

## REFERENCES

- Lobstein T, Jackson-Leach R, Powis J, Brinsden H, Gray M. World obesity atlas 2023.
- Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, Kiyosue A, Zhang S, Liu B, Bunc MC, Stefanski A. Tirzepatide once weekly for the treatment of obesity. *New England Journal of Medicine*. 2022 Jul 21;387(3):205-16.

## CONTACT INFORMATION

Dr. Rishabh Pandey  
Head-Strategy, Growth & Solutions,  
SEREXIA Consultancy Pvt. Ltd.  
Email: rishabh.pandey@serexia.com

Prabhakar Pandey  
Head-Delivery & Operations,  
SEREXIA Consultancy Pvt. Ltd.  
Email: prabhakar.pandey@serexia.com