

Implementing Simultaneous Maximum Acceptable Risk Thresholds (SMARTs) in Discrete Choice Experiments (DCE): A Feasible Approach to Quantify Tolerance for Multiple Risks

L. Panattoni¹, J. Coulter², G. Gahlon¹, B. Hauber², N. Land¹, A.H. Nguyen¹, T. Flottemesch¹, M. Maravic¹, P. Hur²

¹Precision AQ, New York, NY, USA; ²Pfizer Inc., New York, NY, USA

INTRODUCTION

- Quantifying patient preferences for treatment benefits and risks is critical for informing regulatory decisions, clinical guidelines, and shared decision-making.
- Maximum acceptable risk (MAR) is a widely used metric that estimates the highest level of a single risk patients are willing to accept for a given benefit, assuming all other risks remain constant.
- However, real-world treatment decisions often involve multiple risks occurring simultaneously, so considering tolerance for multiple risks jointly may provide important information.

- To address this complexity, simultaneous maximum acceptable risk thresholds (SMARTs) have been proposed as an extension of MAR to capture trade-offs across multiple risks in combination.¹

Objective

- To demonstrate the feasibility of estimating SMARTs and compare SMARTs to individual MAR estimates within and across regions.

METHODS

Discrete Choice Experiment

- A DCE was utilized to capture the trade-offs patients make between efficacy (benefits) and adverse events (risks) when choosing between potential treatment options.
- A total of N=177 patients in the United Kingdom (UK) and N=246 patients in the EU (France, Germany, Italy, and Spain) were included in the analysis.
- Preference weights were estimated using random parameters logit models and effects coding to obtain a preference weight for each level of the attributes tested.

Benefit-Risk Trade-Off Measures

- Benefit-risk trade-offs (MARs and SMARTs) were computed for three risks: Risk A, Risk B, and Risk C. A treatment benefit was selected from one of the efficacy attributes tested.
- MARs** were calculated as the percentage-point change in a risk that exactly offsets the utility gained by a given increase in benefit.²
 - A MAR was calculated for all levels of treatment benefit and risk attributes.
 - Each estimated MAR assumes other risks are constant at their lowest level.
- The **SMART** of Risks A, B, and C was estimated and identified jointly acceptable risk combinations assuming a specified improvement in the efficacy attribute is achieved.
 - The SMART (Fairchild et al 2023)¹ is calculated as:
$$SMART = p_{j=1}^1 = l^{-1} \left(\frac{g(H^1) - g(H^0) - \sum_{j=2}^J [l_j(p_j^1) - l_j(p_j^0)] * [-k_j(AE_j)]}{-k_{j=1}(AE_j)} - l(p_{j=1}^0) \right)$$

Where:

 - H^i is a vector of i treatment benefits, and $g(H^1) - g(H^0)$ is the utility change from changing from vector H^1 to H^0 .
 - $k_j(AE_j)$ is the risk of adverse event j .
 - $l(\cdot)$ are weighted probabilities to allow non-linear preferences.
- Confidence bands for the MARs and SMARTs were computed using the Krinsky-Robb method (1986).³
- The MARs, SMARTs, and their respective confidence bands were compared across regional subgroups.

Implementation of SMARTs

- Select a benefit and at least two risks.
- Scale the preference weights from 0-10 in reference to the benefit, most preferred level is 10 and the least preferred level is 0.
- Set all risk preference weights to the same scale (Table 1).

Benefit of interest = 10% increase in efficacy

$$\text{Benefit quantity} = \left(\frac{10}{45-20} \right) * 10 = 4 = S$$

- Calculate the total disutility at each incremental unit in each risk attribute.

- Assume the lowest level of risk yields 0 disutility.
- For each incremental increase in risk, calculate the slope between risk and utilities.
- Using the slopes, calculate the cumulative utility for each incremental increase in risk (Table 2).

- For each level of calculated utility, calculate the total disutility of the combined risks for every risk combination.

- Identify risk thresholds in one of two ways:
 - Find $\max(j)$ for each level i such that $a_i + b_j \leq S$.
 - Calculate total disutility [Step 2] for all but 1 risk. Then, subtract the disutility from the benefit to find the maximum threshold with the last risk.

- Using the thresholds identified in Step 4, plot the results using a smoothing function or fit a functional form.

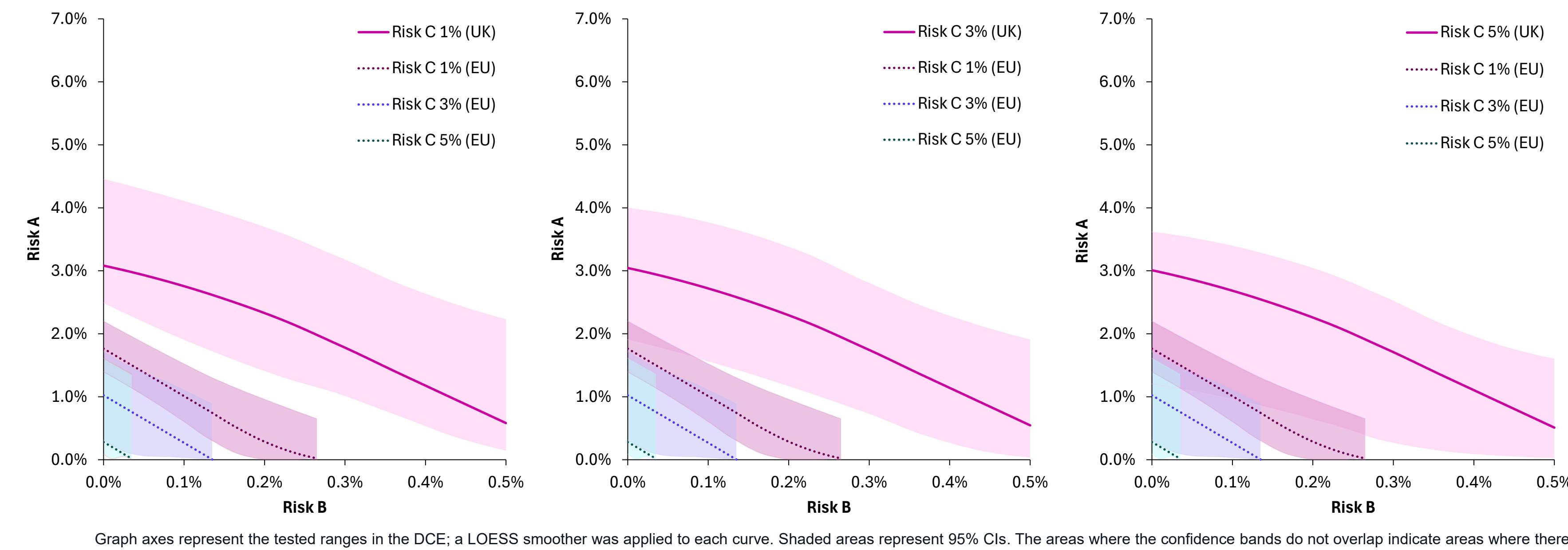
- For each level i , we have the maximum j and can plot level i vs. j .

Table 1. Re-scaling of preference weights (Example)

Attribute-Attribute Level	Weights	Re-scaled values
Efficacy Attribute (Higher level = greater utility)		
20%	-1.94	0
35%	0.26	6.07
45%	1.68	10
Risk A (Higher level = lower utility or greater disutility)		
1%	1.66	0
4%	0.07	-4.37
7%	-1.73	-9.33
Risk B (Higher level = lower utility or greater disutility)		
0.1%	0.46	0
0.3%	-0.14	-1.66
0.5%	-0.32	-2.17

Table 2. Calculating total disutility at each incremental unit (Example)

Incremental level of Risk A	Utility	Slope
0.01000	0.00000	-145.766
0.01005	-0.00729	-145.766
0.01010	-0.01458	-145.766
0.01015	-0.02186	-145.766
0.01020	-0.02915	-145.766
...		
0.03995	-4.36569	-145.766
0.04000	-4.37298	-165.082
0.04005	-4.38123	-165.082
0.04010	-4.38949	-165.082
...		


Confidence Intervals

- Using the preference weights as the mean vector, μ , and the variance-covariance matrix from the model as matrix Σ , sample a sufficient number of replicates, B , from a multivariate Gaussian distribution using mean μ and variance Σ .
- Iterate Steps 1-4 B times. For each level of one risk, compute the 2.5th percentile value and the 97.5th percentile value for the lower and upper threshold values.

RESULTS

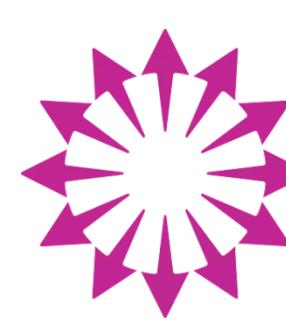
- In exchange for a specified treatment benefit, patients in the UK were willing to accept significantly higher levels of Risk A and Risk B when Risk C was 1% (Left Panel, Figure 2) – and when Risk C was 3% when Risk B exceeded approximately 0.1% (Center Panel, Figure 2) – than every risk combination for patients in the EU.
- That is, when Risks A and B were considered jointly, the SMART demonstrated patients in the UK were willing to accept significantly higher levels of each risk than patients in the EU if Risk C was below 3%.
- However, when Risk C was 5%, there were no statistically significant differences between any risk combination for patients in the UK and EU (Right Panel, Figure 2).

Figure 2. SMARTs for three risks in exchange for the specified treatment benefit by region

CONCLUSIONS

- Calculating SMARTs is feasible and may provide a more nuanced understanding of benefit-risk trade-offs than traditional MAR estimates.
- In addition to exhibiting variation across countries in benefit-risk trade-offs, our findings show patients' tolerance for individual risks decreases when multiple risks are considered jointly, highlighting the importance of accounting for real-world complexity in preference studies.
- Incorporating SMARTs into benefit-risk assessments may improve the accuracy of patient-centered evaluations and can enhance shared decision-making by reflecting the simultaneous nature of treatment risks.

REFERENCES


- Fairchild AO, Reed SD, Gonzalez JM. Method for calculating the simultaneous maximum acceptable risk threshold (SMART) from discrete-choice experiment benefit-risk studies. *Med Decis Making*. 2023;43(2):227-238.
- Hauber AB, Gonzalez JM, Groothuis-Oudshoorn CG, et al. Statistical methods for the analysis of discrete choice experiments: a report of the ISPOR conjoint analysis good research practices task force. *Value Health*. 2016;19(4):300-315.
- Cooper JC. A comparison of approaches to calculating confidence intervals for benefit measures from dichotomous choice contingent valuation surveys. *Land Economics*. 1994;111-122.

ACKNOWLEDGMENTS

Funding for early conceptual research for this study was provided by Pfizer, Inc.

Abbreviations:

CI, confidence interval; DCE, discrete choice experiment; EU, European Union countries included in study (France, Germany, Italy, and Spain); MAR, maximum acceptable risk; SMART, simultaneous maximum acceptable risk thresholds; UK, United Kingdom

PRECISION AQ™
Booth #1003

