
Figure 2. SHAP values for different model features by model outcome. Features are ordered by their importance to the outcome of interest 

Figure 4. Input values heatmap: features are ordered by model importance and 
SHAP value for excess deaths. Each line represents a model scenario with an 
associated input value

Figure 3. Waterfall plot for a randomly selected model scenario for predicted 
excess deaths

Figure 1. Schematic diagram of the neural network-based metamodel trained to 
replicate the selected results of the CKD dynamic prevalence model
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INTRODUCTION
•	 Neural network-based metamodels can effectively replicate the 

outcomes of complex health economic models1 

•	 SHapley Additive exPlanations (SHAP) analysis is a game-theoretic 
approach that can be used to interpret machine learning model output, 
including neural networks

•	 SHAP analysis highlights both overall feature importance and each 
feature’s contribution to individual predictions, uncovering complex 
interactions among model parameters

METHODS
•	 We previously demonstrated that metamodels can be utilised in health 

economics to bypass complexity and democratise modelling1 

•	 A neural network-based metamodel (Figure 1) was fitted to a dynamic 
prevalence model of CKD, predicting a variety of population outcomes 
between 2024 and 2060, based on a system of ordinary differential 
equations (ODEs)

•	 Here, we retrained the model to predict eight output categories for 
the year 2060 and used Latin hypercube sampling (LHS) to generate 
training and test sets of 20,000 and 10,000 model scenarios, 
respectively. The outcomes include total population, total excess 
deaths, total end-stage kidney disease (ESKD) related deaths and total 
numbers of conservative care, peritoneal dialysis, haemodialysis, home 
haemodialysis and transplant cases

•	 SHAP analysis was then carried out on the metamodel to quantify the 
influence that varying treatment eligibility proportions for 40 different 
age and disease-stage combinations has on the eight model outcomes

•	 We generated a range of heatmaps, bee-swarm, and waterfall plots to 
visualise SHAP values for different input values, outcomes, and scenarios

RESULTS
SHAP analysis provides a global view of feature importance
•	 Performing SHAP analysis on the neural network-based metamodel 

of CKD prevalence reveals the relative feature importance for each 
outcome of interest. Figure 2 presents a bee-swarm plot illustrating 
the relative influence of input features (i.e. the number of people of 
a particular age or disease state eligible for treatment) on eight key 
model outcomes in the year 2060, including the size of the CKD 
population, the number of excess deaths, ESKD-related deaths, and 
patients receiving haemodialysis or transplantation. Each scenario is 
represented as a coloured dot, with an associated feature value 

•	 For example, SHAP analysis reveals that the number of excess deaths is 
most sensitive to the size of the treatment-eligible population aged 75+ 
in CKD stage 3a, as increasing the number of eligible patients in this 
group is associated with significant reductions in all-cause mortality

•	 Conversely, ESKD-related deaths are most sensitive to the size of 
the treatment-eligible proportion aged 65–74 years without CKD, 
suggesting that treating people earlier in the disease process may be 
critical to preventing ESKD-related deaths

Interrogating the drivers of model predictions 
•	 SHAP analysis also reveals the drivers of individual model predictions. 

Figure 3 shows a waterfall plot for a randomly chosen model scenario, 
where predicted excess deaths are significantly lower than the average 
across all scenarios. Yellow arrows indicate features that increase the 
predicted value, while maroon arrows denote those that decrease it

•	 The mean expected value of excess deaths is shown at the bottom, with 
an influence of each model parameter affecting the final prediction and 
the magnitude of effect. Since input parameters relate to the proportion 
of people eligible for treatment in the dynamic model (ranging between 
0 and 1), the mean value of each input parameter is 0.5

•	 We can see that reducing the proportion of people who are eligible 
for treatment aged 75+ within the CKD stage 3b has a small increased 
effect on excess deaths, while increasing the proportion of those 
people aged 75+ with CKD stage 3a has the largest impact on the 
reduction in excess deaths in the given scenario

•	 This highlights the ability of SHAP analysis to provide local 
interpretability to individual scenarios, something that traditional 
sensitivity analysis struggles with

OBJECTIVES
•	 This study demonstrates the use of SHAP analysis to interpret 

predictions from a neural network-based metamodel of chronic kidney 
disease (CKD) prevalence, revealing relationships between parameters, 
key outcome drivers, and sources of uncertainty

LIMITATIONS
•	 Computing SHAP values may require considerable computational 

resources and time, subject to the underlying model structure and 
the number of input-output scenarios that would need to be explained

•	 Sampling inputs for training scenarios must be carefully considered, 
as the parameter space needs to be captured as much as possible. 
While LHS ensures efficient coverage, high-dimensional input spaces 
would require an increased number of training scenarios, which in turn 
impacts the required hardware for metamodel training

Machine learning methods are underutilised 
within health economics

Neural network-based metamodels replicate complex health 
economic models with speed and accuracy

SHAP analysis reveals hidden drivers and interactions within 
neural network outputs

Combining neural network-based metamodeling with SHAP 
analysis provides modellers with a toolkit for scaling complex 
models and untangling the key drivers of model outcomes

SCALING COMPLEX MODELS
SHAP analysis complements neural network-based 
metamodelling to unearth model interactions 
and sensitivities

SHAP analysis provides a 

alternative to traditional 
sensitivity analysis

universal,  
flexible, and 
scalable

Uncovering interaction effects and distributional insights
•	 SHAP heatmaps allow for the exploration of feature interactions and 

distributional patterns across scenarios, capturing heterogeneity  
in effects

•	 By arranging the outcome value in increasing fashion and overlaying 
individual input scenarios in a heatmap in the order of feature 
importance, modellers can identify non-linear relationships and 
interactions between parameters. This approach can further be 
extended to identify interactions between specific inputs of interest 
and explore how they interact across the permissible input space

•	 In the CKD model, clustering reveals that combinations of features drive 
higher predictions of excess deaths. In Figure 4, we can see that very 
low input values for those aged 75+ in the ‘No CKD’ and ‘CKD stage 3a’ 
disease groups are important drivers of higher excess death predictions

CONCLUSIONS


