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CONCLUSIONS

SHAP analysis provides a

universal,

Machine learning methods are underutilised
within health economics

Neural network-based metamodels replicate complex health
economic models with speed and accuracy

flexible, and
scalable

alternative to traditional
sensitivity analysis

SHAP analysis reveals hidden drivers and interactions within
neural network outputs

Combining neural network-based metamodeling with SHAP
analysis provides modellers with a toolkit for scaling complex
models and untangling the key drivers of model outcomes

RESULTS

SHAP analysis provides a global view of feature importance

INTRODUCTION

Neural network-based metamodels can effectively replicate the

outcomes of complex health economic models? . .
For example, SHAP analysis reveals that the number of excess deaths is

most sensitive to the size of the treatment-eligible population aged 75+
in CKD stage 3a, as increasing the number of eligible patients in this
group is associated with significant reductions in all-cause mortality

e Performing SHAP analysis on the neural network-based metamodel o
of CKD prevalence reveals the relative feature importance for each
outcome of interest. Figure 2 presents a bee-swarm plot illustrating
the relative influence of input features (i.e. the number of people of
a particular age or disease state eligible for treatment) on eight key
model outcomes in the year 2060, including the size of the CKD
population, the number of excess deaths, ESKD-related deaths, and
patients receiving haemodialysis or transplantation. Each scenario is
represented as a coloured dot, with an associated feature value

o SHapley Additive exPlanations (SHAP) analysis is a game-theoretic
approach that can be used to interpret machine learning model output,
including neural networks

o SHAP analysis highlights both overall feature importance and each
feature’s contribution to individual predictions, uncovering complex
interactions among model parameters

e Conversely, ESKD-related deaths are most sensitive to the size of
the treatment-eligible proportion aged 65-74 years without CKD,
suggesting that treating people earlier in the disease process may be
critical to preventing ESKD-related deaths
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SCALING COMPLEX MODELS

SHAP analysis complements neural network-based

Figure 2. SHAP values for different model features by model outcome. Features are ordered by their importance to the outcome of interest
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the year 2060 and used Latin hypercube sampling (LHS) to generate 20

training and test sets of 20,000 and 10,000 model scenarios,
respectively. The outcomes include total population, total excess
deaths, total end-stage kidney disease (ESKD) related deaths and total
numbers of conservative care, peritoneal dialysis, haemodialysis, home
haemodialysis and transplant cases

SHAP value

Interrogating the drivers of model predictions Uncovering interaction effects and distributional insights

o SHAP heatmaps allow for the exploration of feature interactions and
distributional patterns across scenarios, capturing heterogeneity
in effects

e SHAP analysis also reveals the drivers of individual model predictions.
Figure 3 shows a waterfall plot for a randomly chosen model scenario,
where predicted excess deaths are significantly lower than the average
across all scenarios. Yellow arrows indicate features that increase the
predicted value, while maroon arrows denote those that decrease it

e SHAP analysis was then carried out on the metamodel to quantify the
influence that varying treatment eligibility proportions for 40 different
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age and disease-stage combinations has on the eight model outcomes y arranging the outcome value in increasing fashion and overlaying

individual input scenarios in a heatmap in the order of feature
importance, modellers can identify non-linear relationships and
interactions between parameters. This approach can further be
extended to identify interactions between specific inputs of interest
and explore how they interact across the permissible input space

 We generated a range of heatmaps, bee-swarm, and waterfall plots to o
visualise SHAP values for different input values, outcomes, and scenarios

The mean expected value of excess deaths is shown at the bottom, with
an influence of each model parameter affecting the final prediction and
the magnitude of effect. Since input parameters relate to the proportion
of people eligible for treatment in the dynamic model (ranging between
O and 1), the mean value of each input parameter is 0.5

Figure 1. Schematic diagram of the neural network-based metamodel trained to
replicate the selected results of the CKD dynamic prevalence model
e |n the CKD model, clustering reveals that combinations of features drive

 We can see that reducing the proportion of people who are eligible higher predictions of excess deaths. In Figure 4, we can see that very
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