

Dimiou S¹; Falla E¹; Tanner S², Amoura L³, Faivre P³, Faour N¹; Green N¹, Ibok A¹, Kotseva F⁴, Kruger R⁵, Leite J⁶, Lisica A¹, Myhers-Wallis B⁵, Newsome D¹, Oswald C¹, Quequet-Leyssieux A³, Sitaru-Radu X¹, Spadaro B⁷, Stamoulou A⁸, Skowron P⁹; Van Engen A², Walters J¹

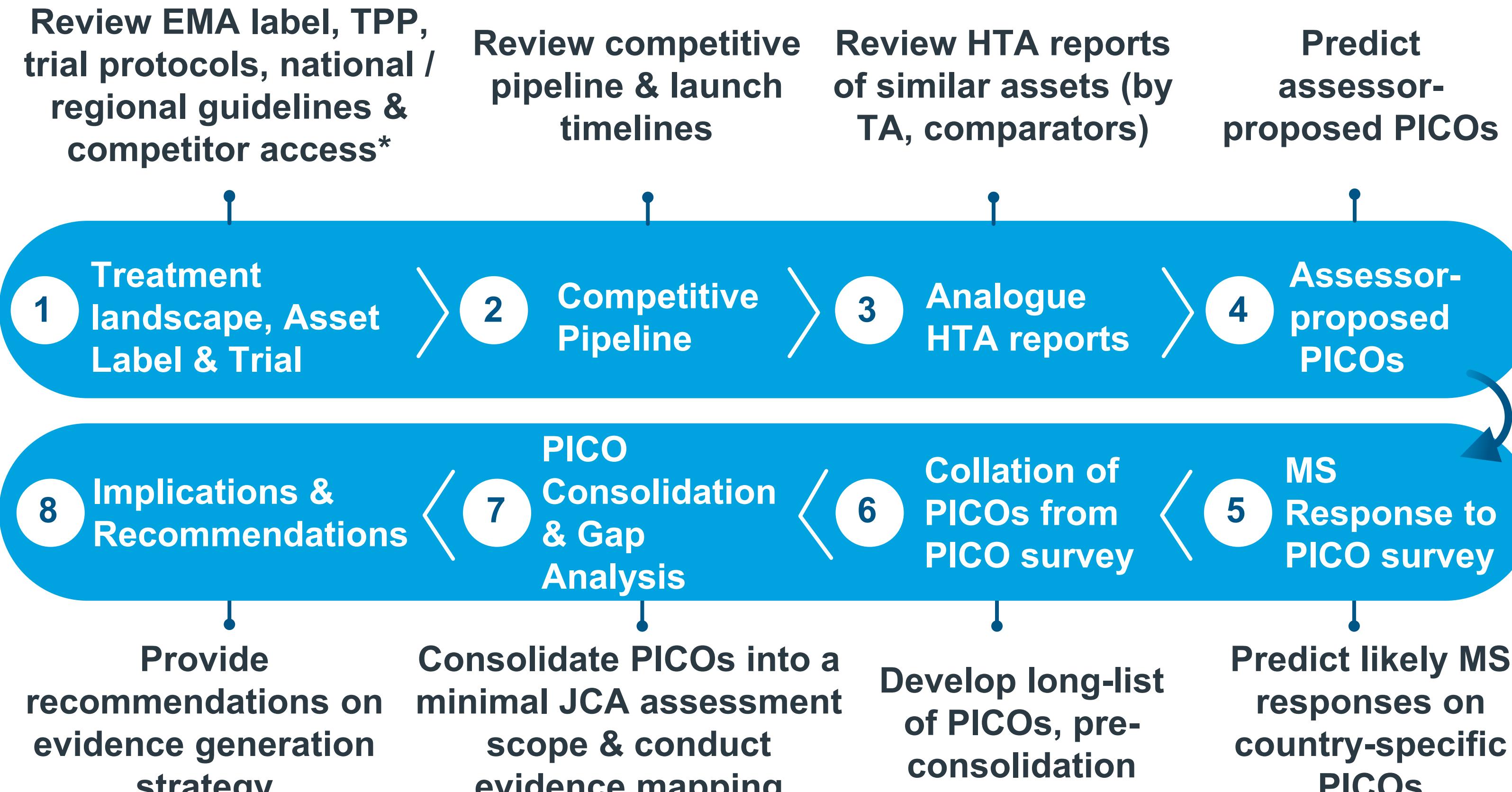
¹IQVIA, London, UK; ²IQVIA, Amsterdam, NH, Netherlands; ³IQVIA, Paris, France; ⁴IQVIA, Sofia, Bulgaria; ⁵IQVIA, Munich, Germany; ⁶IQVIA, Oeiras, Portugal; ⁷IQVIA, Milan, Italy; ⁸IQVIA, Athens, Greece; ⁹IQVIA, Kraków, Poland

Introduction

With **several products currently undergoing JCA** and no JCA reports available yet, HTDs must proactively interpret the official MPG to adjust internal planning

A key JCA objective is to establish the **JCA PICO scope** with input from all **EU MS** (PICO survey)¹; HTDs have limited involvement

Once the JCA assessors share the consolidated PICOs, HTDs must provide appropriate evidence requested within **60 (accelerated EMA procedure)** or **100 (standard EMA procedure)** days


HTDs need to **anticipate the PICO scope** early and submit the requested evidence on time or provide a strong justification for not addressing PICOs

24 PICO simulations (January 2022 – April 2025) were conducted following latest MPG²⁻⁶ on the JCA scoping process (**Figure 1**) to support HTDs predict the PICO scope and inform their evidence generation strategy

Methods

Figure 1: PICO Simulation Methodology

Figure 1. Step-by-step methodology for PICO simulation exercises. Latest MPG²⁻⁶ on the JCA scoping process and learnings from PICO exercises conducted by the HTA CG were followed. *Off-label products could also be requested during JCA depending on the TA/current SoC considerations

Results

- PICOs were simulated for **21 oncology products**⁷ and 1 genetic disorder; 2 of these were ATMPs and 2 also had orphan drug status. Indications included **breast cancer** (n=5), **lung cancer** (n=7), **haematological cancers** (n=5), other **solid tumours** (e.g., gastric, prostate, etc., n=6) and a genetic disorder (n=1)
- The number of MS to predict the country-specific response to the PICO survey ranged from **5 – 15 MS**. A **base case** (most-likely scenario) and a '**worst case**' (following the most rigorous interpretation of the latest MPG on the JCA scoping process, alongside considerations such as EMA label interpretation and competitive landscape) were developed for each asset, where applicable
- The **median number of PICOs** was **9 and 17 in the base- and worst-case scenarios**. Findings were in line with PICO exercises carried out by the JCA Subgroup (**Table 1**)⁸⁻¹⁰
- Notably, **subgroup analyses** were also requested across all PICOs by the JCA Subgroup; however, the **list of outcomes** was not as extensive or descriptive as initially anticipated, alleviating some concerns regarding the scope of required evidence
- The minimum number of analyses for the base case ranged from **35 to 720** and **270-3,663** for the worst case, pending ITC feasibility assessments. As seen in **Figure 2**, **most PICOs (67%) would require an ITC**
- The TA with the highest number of PICOs was **breast cancer** (16 in base, 25 in worst case), while other oncology indications had similar number of PICOs (~10 in base case) (**Figure 3**)

Table 1: Number of PICOs across case studies & JCA Subgroup exercises

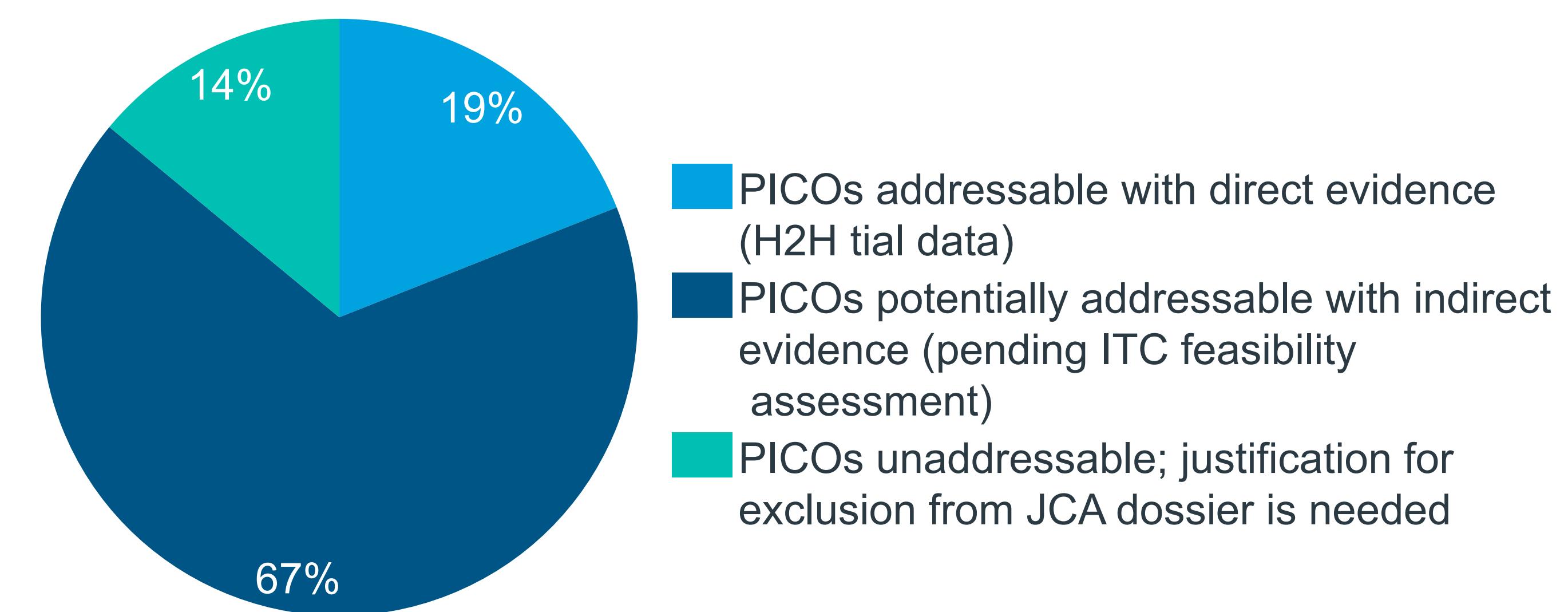

	Base Case Median (range)	Worst Case Median (range)	JCA Subgroup exercises Median (range) ⁸⁻¹⁰
Populations	6 (1 – 16)	9 (3 – 21)	7 (3 – 7)
Comparators	8 (4 – 18)	12 (6 – 23)	7 (6 – 16)
Outcomes	27 (17 – 54)	34 (17 – 111)	26 (20 – 39)
PICOs	9 (5 – 21)	17 (5 – 88)	13 (7 – 13)

Table 1. Summary of median and range outputs of the total number of PICOs, populations (full EMA label + subpopulations), comparators and outcomes for the base- and worst-case across case studies (n=24), including a comparison to PICO exercises carried out by the JCA Subgroup (n=3)

Conclusions and implications

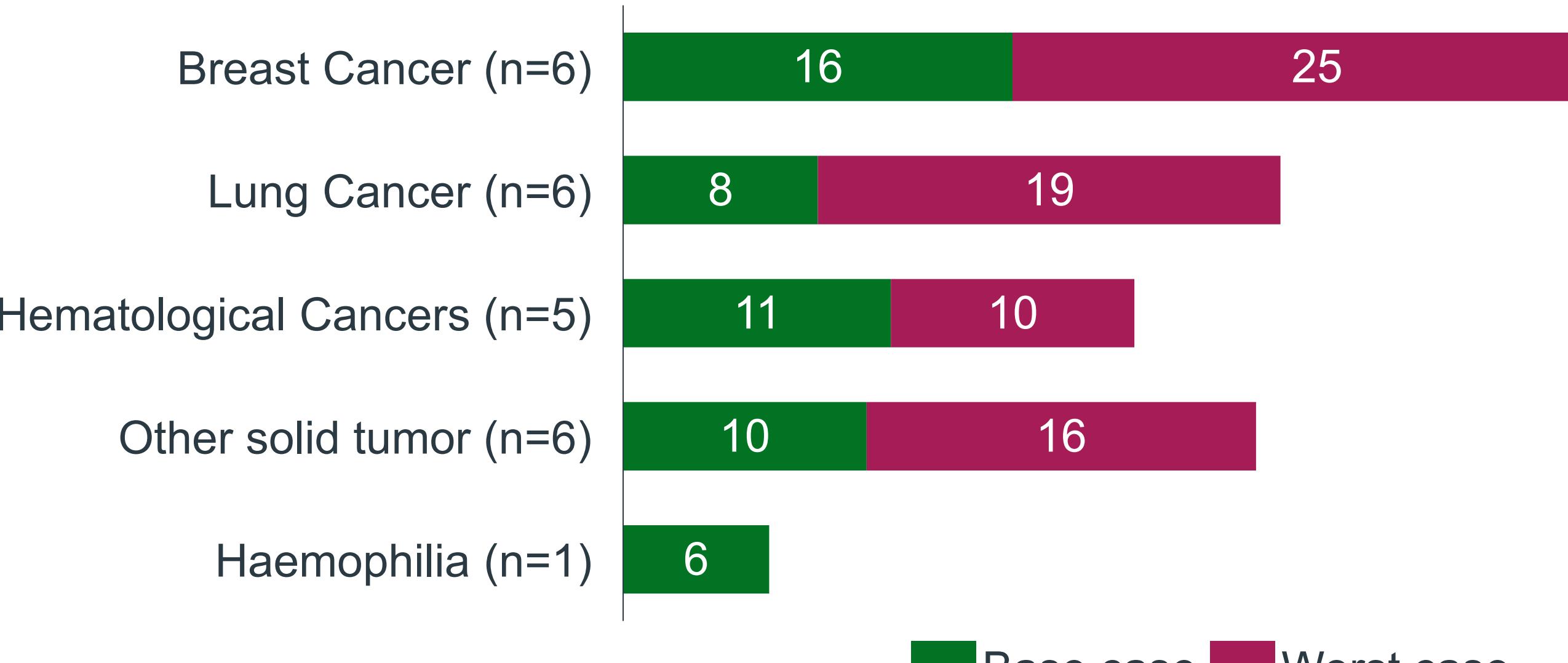

- Our findings for the number of predicted PICOs are in line with the **PICO simulation exercises for medicinal products** carried out by the **JCA Subgroup** (PICOs range 7-13), demonstrating the robustness of our analysis and early insights from ongoing JCAs. For products launching in complex treatment landscapes where SoCs vary by MS, the anticipated **number of PICOs and associated analyses is anticipated to be high**.
- The majority of PICOs (up to ~80%) require ITCs to demonstrate comparative effectiveness vs all comparators requested, or strategic justification for exclusion from the JCA dossier when not feasible, imposing a **significant burden on HTDs** to deliver comprehensive evidence within tight timelines.
- Considering the limited input from HTDs in the JCA scoping process and the high number of expected JCA PICOs, **early anticipation of PICO requirements** (i.e., as early as Phase 1 development) is crucial to better inform **pivotal trial design and overall evidence generation strategy** (i.e., planning for ITCs, RWE, etc.)¹¹.
- Learnings from the ongoing JCA processes in 2025 indicate that, in addition to a high number of PICOs, subgroups aligned partly with clinical trial stratification factors will be requested across all PICOs where data is available. This further increases the analysis burden, making early planning and prediction of PICO subpopulations and potential subgroup analyses crucial.
- HTDs should also **iteratively review and refine their PICO predictions** to account for updates to the treatment landscape (i.e., changes to treatment guidelines), and broader asset strategy (i.e., EMA label updates).

Figure 2: Per PICO evidence mapping

Figure 2. Distribution of PICOs (N= 170 PICOs, base case) across case studies (N=24) by per PICO evidence mapping and gap analysis (i.e., addressable, potentially addressable, unaddressable)

Figure 3: Median number of PICOs by TA

Figure 3. Median number of PICOs by TA in the base and worst cases across PICO simulation case studies (N=24); Haematological cancers include lymphomas, leukaemia's, MDS & myeloma indications; Other solid tumours include prostate, bladder, gastric/GEJ, glioma & HNSCC