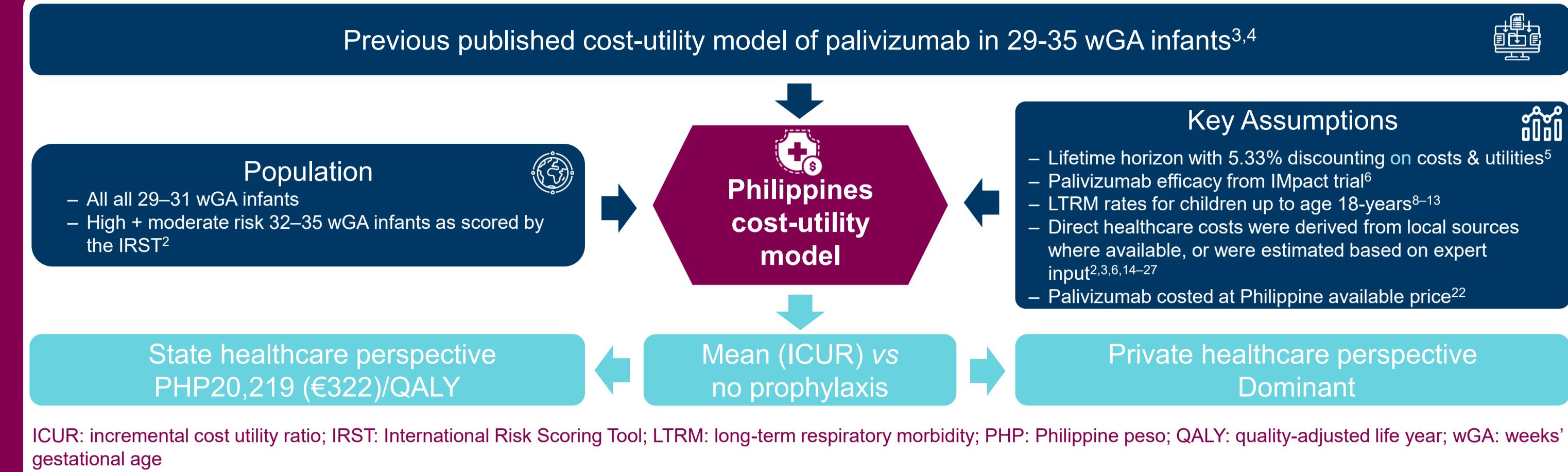


ASSESSMENT OF THE COST-UTILITY OF PALIVIZUMAB FOR PREVENTING SEVERE RESPIRATORY SYNCYTIAL VIRUS (RSV) INFECTION IN PRETERM INFANTS BORN 29–35 WEEKS GESTATIONAL AGE IN THE PHILIPPINES

Del Rosario Famadico S^{1,2}, Carbonell-Estrany X³, Paes B⁴, Tarride J-E^{4,5}, Rodgers-Gray B⁶, Keary I⁶, Fullarton J⁶

¹Makati Medical Center, Makati City, Philippines; ²University of the Philippines-Philippine General Hospital, Manila, Philippines; ³Hospital Clinic, Barcelona, Spain; ⁴McMaster University, Hamilton, Ontario, Canada; ⁵St Joseph's Healthcare, Hamilton, Canada; ⁶Violicom Medical Limited, Aldermaston, United Kingdom


Why did we perform this research?

- Palivizumab has been available for the prevention of severe respiratory syncytial virus (RSV) infection in high-risk infants since 1998, albeit its availability and use in low- and middle-income countries remains relatively limited¹
- The International Risk Scoring Tool (IRST)² was developed to support the identification of infants born at 32–35 weeks' gestational age (wGA) who are at increased risk of RSV-related hospitalisation (RSVH) and comprises 3 risk factors: 1. Birth 3 months before to 2 months after the RSV season start; 2. Smokers in the household and/or smoking while pregnant; and 3. Siblings/daycare
- Use of the IRST has been shown to improve the cost-effectiveness of palivizumab in countries within North America (e.g. Canada), South America (e.g. Colombia), Europe (e.g. Italy), and Asia (e.g. South Korea)³

Objective: To provide the first assessment of the cost-utility of palivizumab for the prevention of severe respiratory syncytial virus (RSV) infection in premature infants born at 29–35 weeks' gestational age (wGA) in the Philippines

Summary

ICUR: incremental cost utility ratio; IRST: International Risk Scoring Tool; LTRM: long-term respiratory morbidity; PHP: Philippine peso; QALY: quality-adjusted life year; wGA: weeks' gestational age

Key takeaway

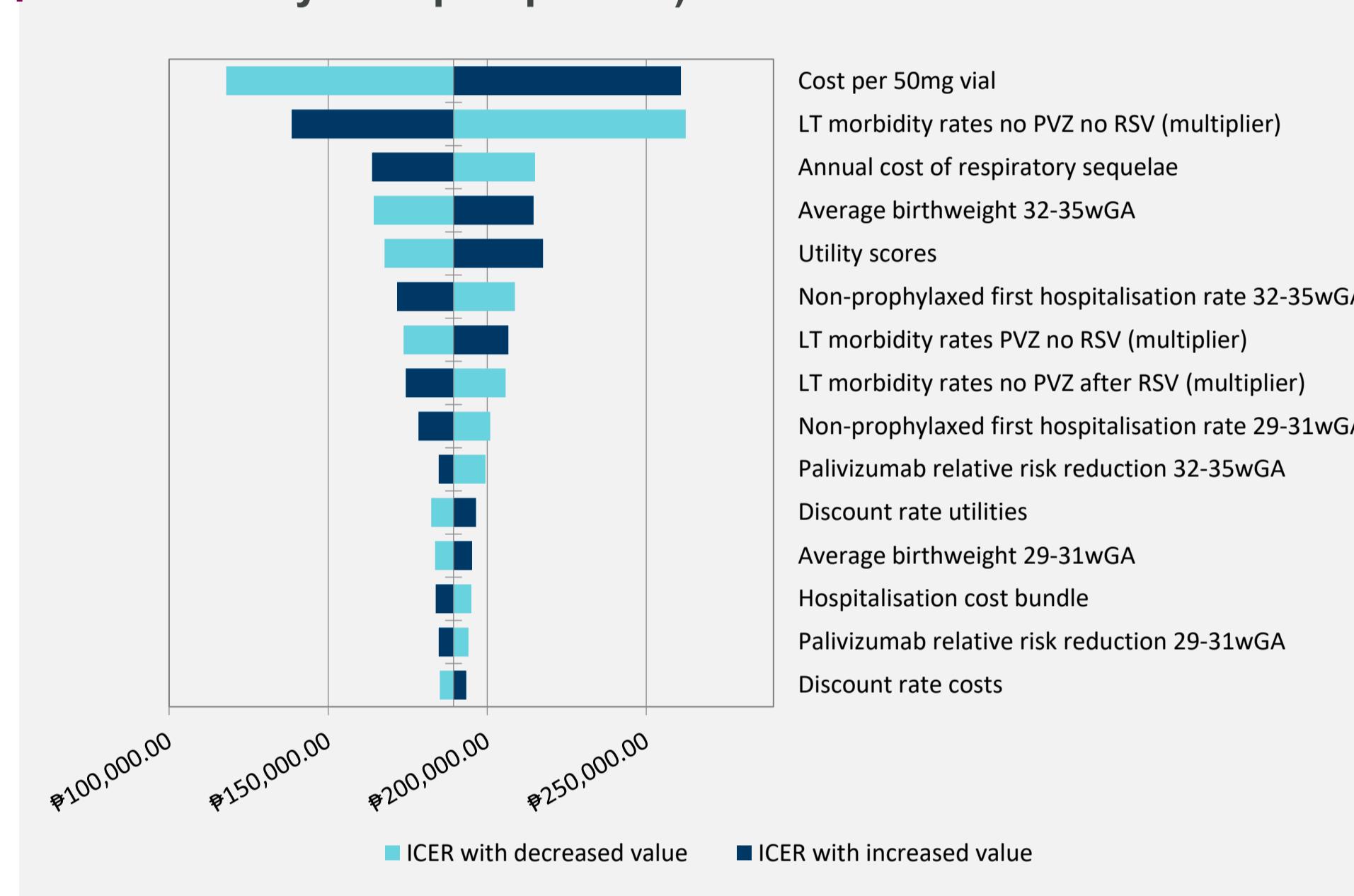
- Palivizumab was found to be cost-effective (vs no prophylaxis) for use in Filipino 29–35 wGA infants
- The IRST should be considered to target prophylaxis locally in 32–35 wGA infants

IRST: International Risk Scoring Tool; wGA: weeks' gestational age

What did we find?

Palivizumab prophylaxis of 29–35 wGA infants was cost-effective versus no intervention from the Philippine state healthcare system perspective

- The mean ICUR was PHP20,219 (€322)/QALY, with a 92.3% probability of being cost-effective at a willingness to pay threshold of 1 times the gross domestic product *per capita* (PHP211,666 [€3,376]) (Table 1 & Figure 1)


Table 1. Palivizumab prophylaxis was a cost-effective strategy vs no prophylaxis from the state healthcare system perspective

No palivizumab	Palivizumab
Total costs, PHP (€)	103,201 (1,644)
Total QALYs	19.16
Mean ICUR, PHP (€)	20,219/QALY (€322)

ICUR: incremental cost-utility ratio; QALY: quality-adjusted life year; PHP: Philippine peso

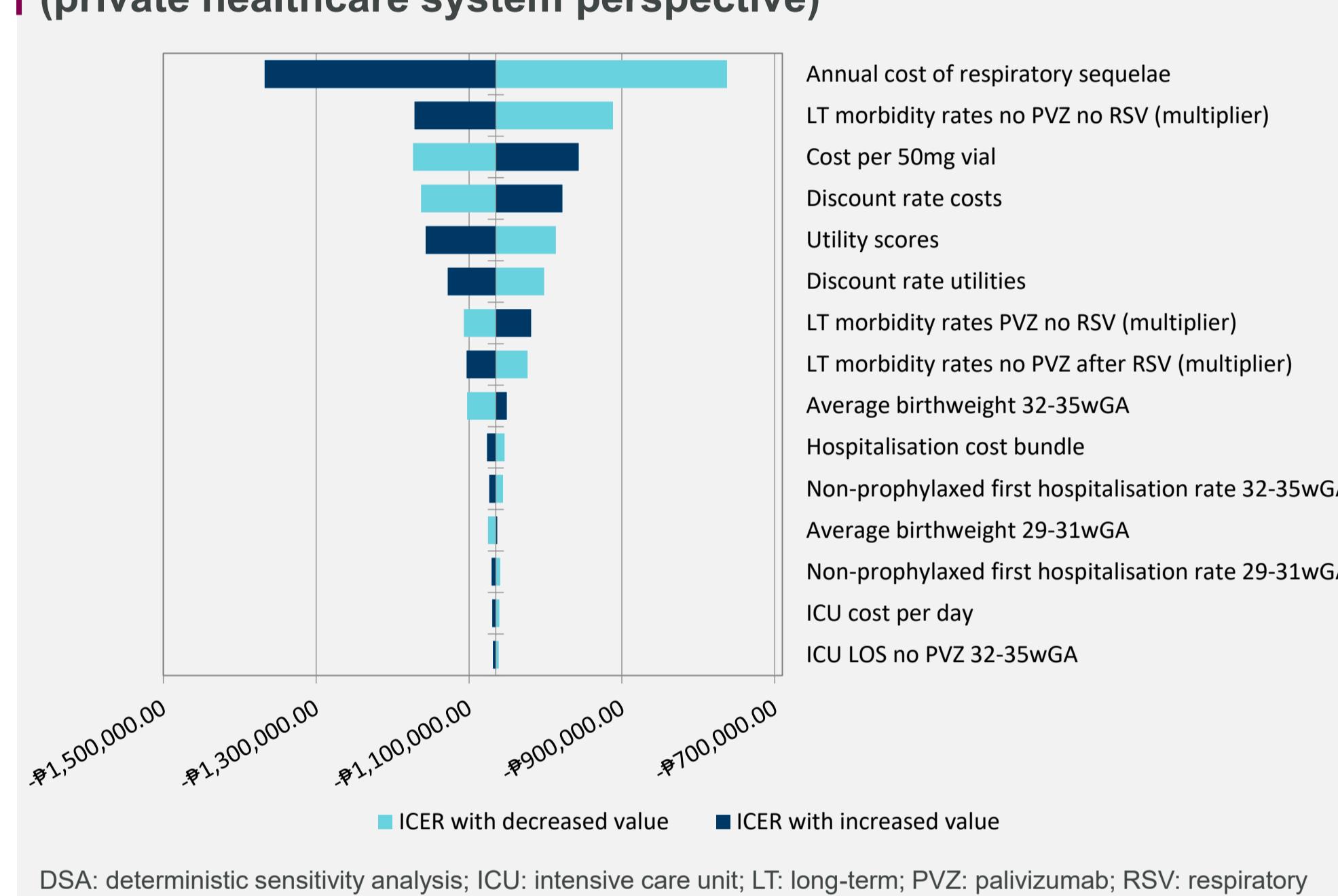

- In deterministic sensitivity analyses the model was most sensitive to palivizumab cost and long-term morbidity (LTRM) rate (Figure 2)

Figure 2. DSA found that cost-effectiveness was most sensitive to palivizumab cost and long-term morbidity rate (State healthcare system perspective)

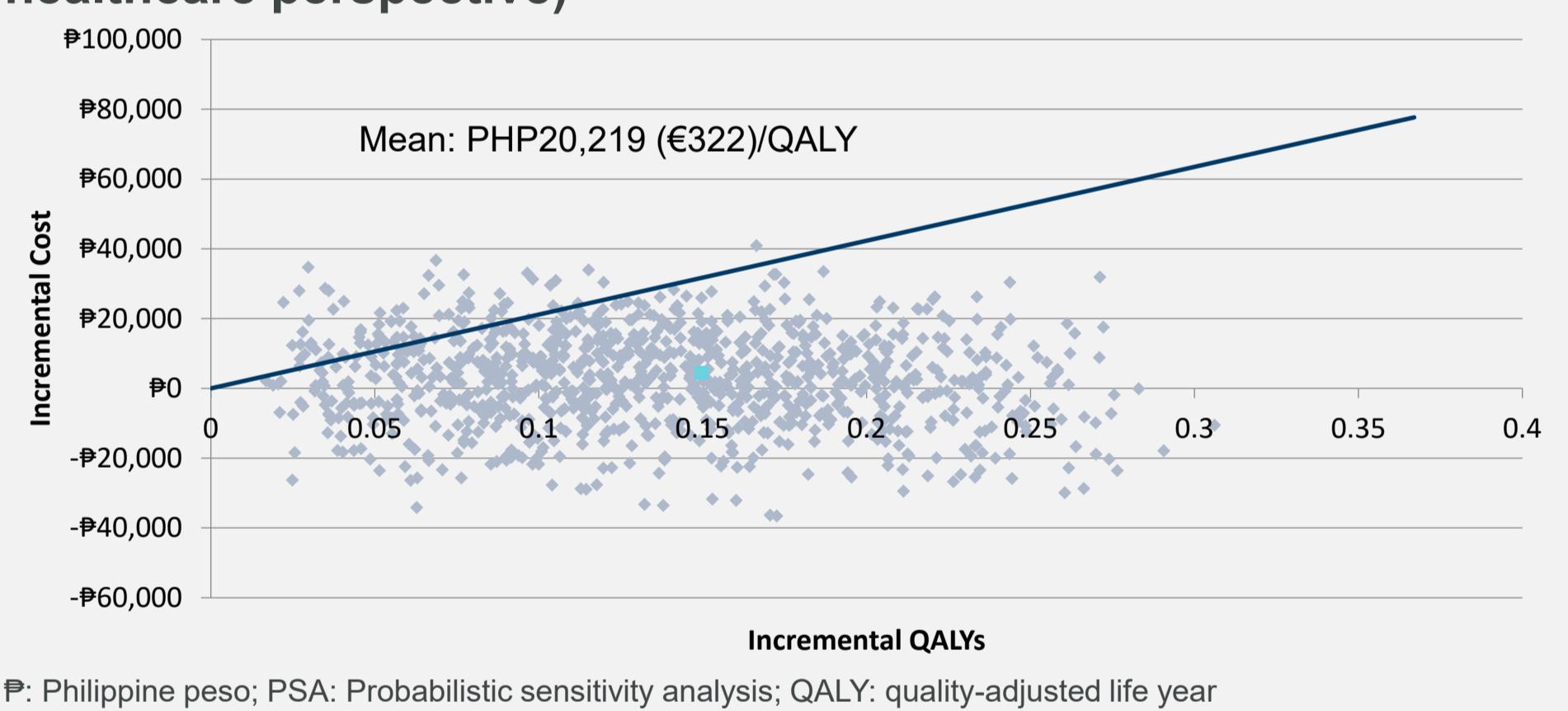
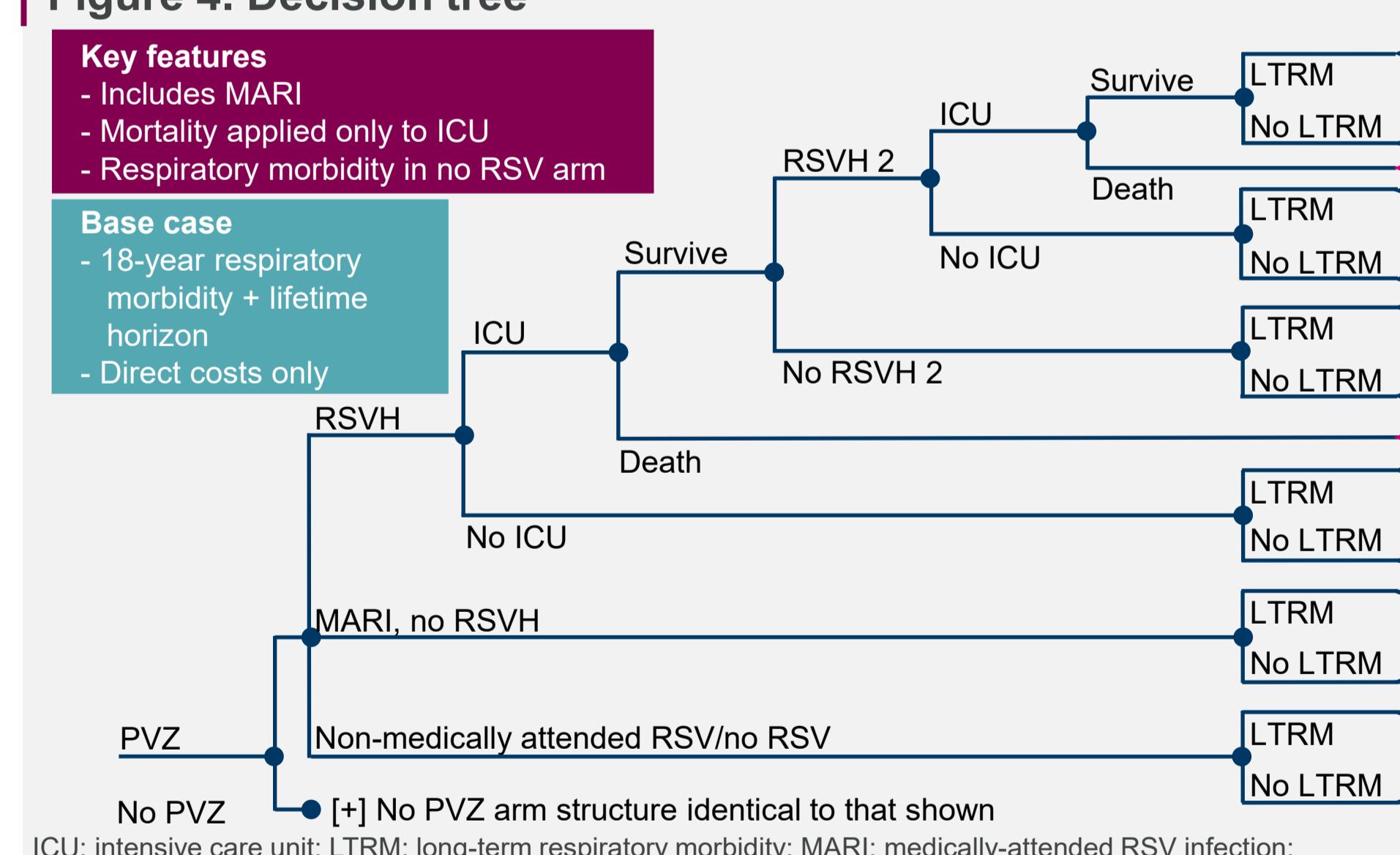

DSA: deterministic sensitivity analysis; LT: long-term; PVZ: palivizumab; RSV: respiratory syncytial virus; wGA: weeks' gestational age

Figure 3. DSA found that cost-effectiveness was most sensitive to the cost and duration of long-term respiratory morbidity (private healthcare system perspective)

DSA: deterministic sensitivity analysis; ICU: intensive care unit; LT: long-term; PVZ: palivizumab; RSV: respiratory syncytial virus; wGA: weeks' gestational age

Figure 1. PSA demonstrated that the probability of cost-effectiveness for palivizumab prophylaxis was 92.3% at a willingness-to-pay threshold of PHP211,666 (€3,376, state healthcare perspective)

P: Philippine peso; PSA: Probabilistic sensitivity analysis; QALY: quality-adjusted life year


How did we perform this research?

- A previously published cost-utility model^{3,4} was adapted for the Philippine state and private healthcare settings using, where available, country-specific parameters
- Palivizumab prophylaxis was compared to no prophylaxis in 29–35 wGA infants as follows:
 - All 29–31 wGA infants included in the analysis
 - 32–35 wGA infants identified as being at moderate- or high-risk of RSVH by the IRST² (score ≥20/56) were included in the analysis
- Infants followed a new decision tree based on a systematic review of previous economic evaluations of palivizumab in 29–35 wGA infants and input from global and national clinical and health economic experts (Figure 4)
 - Infants experienced RSVH, medically attended RSV infection not requiring hospitalisation (MARI), or were uninfected/non-medically attended
 - Infants admitted to the intensive care unit (ICU) could subsequently suffer mortality; survivors could be readmitted to hospital for RSV infection
 - All surviving infants had the potential to experience long-term respiratory morbidity
- In the absence of specific Philippine data, baseline RSVH rates were estimated as 11.60% for 29–31 wGA infants using data from a systematic review and meta-analysis²³ and 6.3% for 32–35 wGA infants judged at high- and moderate-risk using the database (N=13,475) that generated the IRST² (Table 2)
- Palivizumab efficacy was derived from the IMPact-RSV study⁶: RSVH relative reduction 63.3% for 29–31 wGA and 82.2% for 32–35 wGA infants
- Prophylaxis costs were calculated using Philippine palivizumab 50 mg vial price,²² published birthweights²¹ and a growth algorithm²⁴ (Table 3)
 - Mean number of palivizumab doses *per infant* was 3.75, predicated on 5-month RSV season
 - No vial sharing was assumed commensurate with the palivizumab label²⁵
- Healthcare resource use (Table 2) and direct healthcare costs (Table 3) were derived from local sources where available, or were validated/estimated based on expert input^{2,3,6,14–21}
- Long-term respiratory morbidity (LTRM) was assessed up to age 18 years across a lifetime horizon among RSVH, MARI, or uninfected/non-medically attended infants (Table 4)
 - LTRM rates were drawn from the SPRING⁷ study up to 6 years of age and from Sigurs *et al.*^{8–10} thereafter
 - The impact of palivizumab on LTRM was modelled based on data from three studies^{11–13}
- Costs and utilities were discounted at 5.33% as per the Philippine standard⁵
- Deterministic (±20% on main variables) sensitivity analyses was undertaken
- Results are expressed as an incremental cost per quality-adjusted life year (QALY; also called incremental cost-utility ratio [ICUR]) versus no prophylaxis, calculated using probabilistic analysis (1,000 iterations)

Disclosures

- BP and XCE have received research funding and/or compensation as advisors/lecturers from AstraZeneca
- BP has received compensation as an advisor from Merck Sharp Dohme, Pfizer and Sanofi
- BRG, IK, and JF employers have received payment
- from AstraZeneca for work on various projects
- from AstraZeneca as an advisor
- JET have nothing to disclose.

Figure 4. Decision tree

ICU: intensive care unit; LTRM: long-term respiratory morbidity; MARI: medically attended RSV infection (not requiring hospitalisation); PVZ: palivizumab; RSVH: RSV hospitalisation

Table 2. Model inputs

Parameter	Palivizumab	No palivizumab
RSVH		
- 29–31 wGA rate ^{3,23}	4.26%	11.60%
- 32–35 wGA rate: IRST moderate + high risk ^{2,6}	1.12%	6.3%
- ICU rate ¹⁴	12.00%	12.00%
- Hospital ward length of stay, mean days ¹⁴	5.00	5.00
- Utility in hospital ^{15,16}	0.60	0.60
- Utility post discharge, no sequelae ¹⁷	0.88	0.88
- Utility post discharge, long-term sequelae ¹⁸	0.79	0.79
- Mortality (ICU patients only) ¹⁴	2.00%	2.00%
MARI		
- Rates		
- Outpatient only rate ^{6,19,20}	2.48%	13.92%
- Outpatient plus ED	0.42%	2.36%
- ED only	0.05%	0.29%
- Utility no sequelae ¹⁷	0.95	0.95
- Utility long-term sequelae ¹⁸	0.79	0.79
No RSVH/MARI		
- Utility no sequelae ¹⁷	0.95	0.95
- Utility long-term sequelae ¹⁸	0.79	0.79
Birth weight (g) ²¹		
- 29–31 wGA	1,200	1,200
- 32–35 wGA	1,900	1,900

ED: emergency department; ICU: intensive care unit; MARI: medically attended RSV infection (not requiring hospitalisation); RSV: respiratory syncytial virus; RSVH: RSV hospitalisation

Acknowledgments

- Financial support for this study was provided by AstraZeneca
- All authors contributed to the development of the publication and maintained control over final content

Table 3. Direct costs

Parameter	Cost, PHP (Euro)
Palivizumab (total cost per infant) ^{22,26}	81,777.61 (1,304.33)
- 29–31 wGA	83,612.37 (1333.59)
Pre-admission healthcare contact (State/Private) ²⁷	10,000.00/15,000.00 (1,194.51/2,389.03)
RSVH per stay excluding ICU (State/Private) ²⁷	75,000.00/150,000.00 (1,194.51/2,389.03)
ICU per admittance (State/Private) ²⁷	150,000.00/500,00.00 (2,389.03/7,963.43)
MARI	3,000.00/10,000.00 (47.78/159.27)
Respiratory morbidity per annum (State/Private) ²⁷	100,000/320,000 (1,592.69/5,096.60)

ED: Emergency department; ICU: intensive care unit; MARI: medically attended RSV infection (not requiring hospitalisation); PHP: Philippine peso; RSV: respiratory syncytial virus; RSVH: RSV hospitalisation

Table 4. Long-term respiratory morbidity rates^{8–13}

Years	Palivizumab	No palivizumab
	RSVH	RSVH
0–1	18.43%	5.38%
1–2	18.43%	5.38%
2–3	11.05%	5.80%
3–4	6.12%	4.15%
4–5	4.39%	2.73%
5–6	3.25%	2.53%
6–7	2.93%	2.29%
7–13	2.33%	1.47%
13–18	1.79%	1.17%

RSVH: respiratory syncytial virus hospitalisation

References

- Carbonell-Estrany X *et al.* *Expert Rev Anti Infect Ther* 2025;23:359–78.
- Blanken MO *et al.* *Pediatr Pulmonol* 2018;53:605–12.
- Paes B *et al.* Presented at the Canadian Association for Population Therapeutics 2023 Conference.
- Kassim A *et al.* Presented at the 8th RESVINET conference RSVVVW 24.
- Philippine Health Technology Assessment (HTA) Methods Guide.
- Noratio G *et al.* *Pediatr Health Ther* 2014;5:43–8.
- Carbonell-Estrany X *et al.* *PLoS One* 2015;10:e0125426.
- Sigurs N *et al.* *Am J Respir Crit Care Med* 2005;171:1045–51.
- Blanken MO *et al.*