

CO168

Nephrotoxicity of Antisense Oligonucleotide Therapies in Duchenne Muscular Dystrophy: a warning or a challenge?


Tim ULINSKI, MD, PhD¹, Lamine MAHI, MD^{2,*}, Luis GARCIA, PhD³, Christian DE CHASTEIGNER, MD⁴, Helge AMTHOR, MD, PhD⁵.¹Pediatric Nephrology Department, CHU Armand Trousseau – Sorbonne-University, Paris, France, ²Clinical Research, Axelys Santé, Malakoff, France, ³END-ICAP, UMR 1179 – INSERM/Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France, ⁴Pharmacovigilance, CdC Santé, Nice, France, ⁵Pediatric Department, CHU Raymond Poincaré, Garches, France.

*Correspondence: lamine.mahi@axelys-sante.com

INTRODUCTION & OBJECTIVES OF THE STUDY

Duchenne Muscular Dystrophy (DMD) & treatments

- DMD is a severe X-linked neuromuscular disorder caused by dystrophin gene mutations.¹
- Antisense oligonucleotide (ASO) therapies have emerged as mutation-specific treatments for DMD by promoting exon skipping to restore dystrophin expression.²
- However, concerns about renal toxicity — including proteinuria and electrolyte dysregulation — have been reported in preclinical and clinical studies.³
- DMD patients are particularly vulnerable due to long-term treatment exposure and underlying muscle degeneration, chronic inflammation, and corticosteroid use, notably in pediatric patients.²

Objectives

To review clinical trials involving ASO therapies used in DMD and to assess the frequency of nephrotoxic events (including proteinuria) reported across studies.

METHODS

Data sources and timeframe:

Systematic search of ClinicalTrials.gov and EU Clinical Trials Register up to March 2025.

Inclusion criteria:

Phase I–IV clinical trials assessing the safety or efficacy of approved or investigational ASOs in DMD :

Drug	Chemical Class	Mechanism
Eteplirsen	Phosphorodiamidate morpholino oligomer (PMO)	Morpholino neutral backbone, exon 51 skipping
Golodirsen	Phosphorodiamidate morpholino oligomer (PMO)	Exon 53 skipping, similar to eteplirsen
Viltolarsen	Phosphorodiamidate morpholino oligomer (PMO)	Exon 53 skipping, similar to eteplirsen
Casimersen	Phosphorodiamidate morpholino oligomer (PMO)	Exon 45 skipping, similar to eteplirsen
Drisapersen	2'-O-methyl phosphorothioate ASO	Exon 51 skipping, negatively charged backbone
Vesleteplirsen	Peptide-conjugated PMO	Exon 51 skipping, cell-penetrating peptide

Endpoints analyzed:

Frequency of renal adverse events (nephrotoxicity and proteinuria). Comparison between treatment and placebo/control groups.

Data extraction:

Summary of renal events, trial phase and status, age range of participants and study duration per participant.

RESULTS

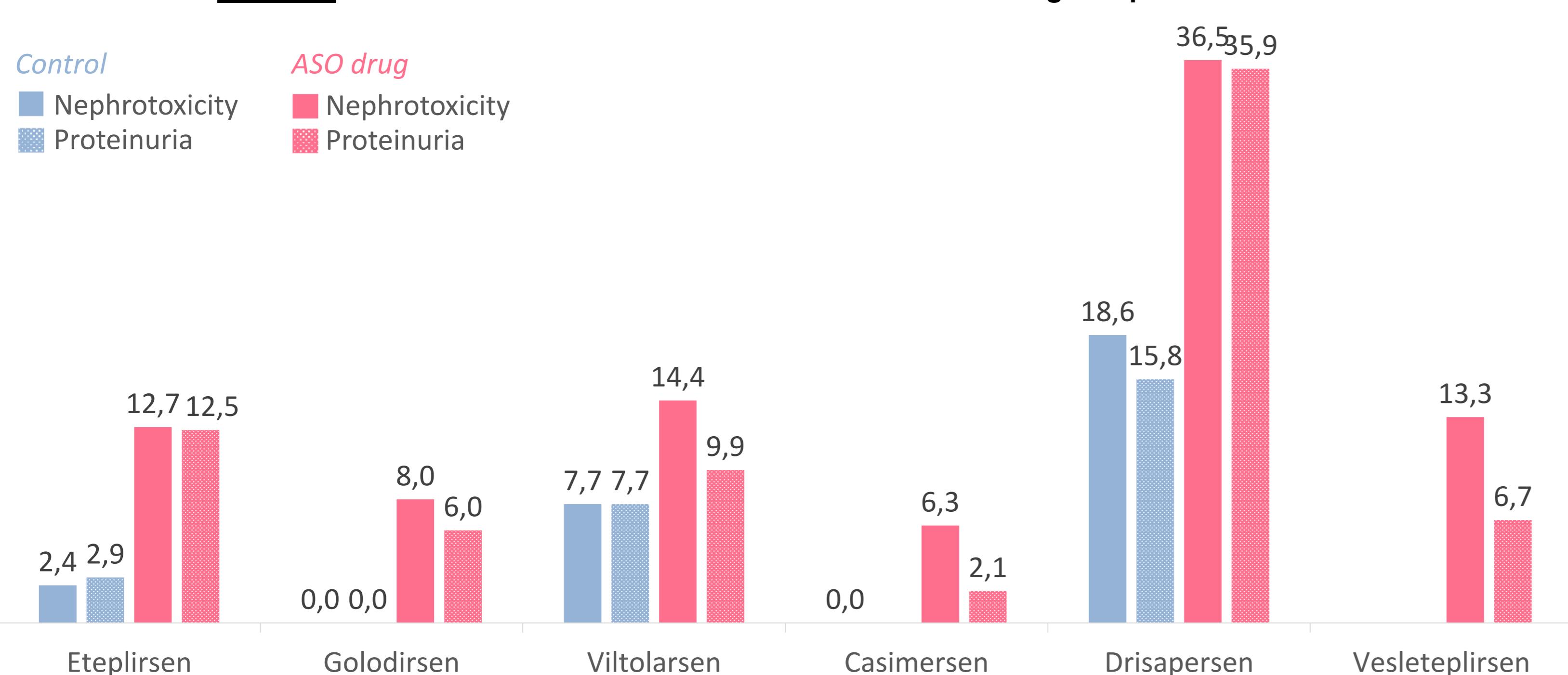

Renal safety data within the clinical trials involving ASO therapies in DMD

Table 1: Main characteristics of the 30 clinical trials analyzed

Drug	# Clinical Trials (Phase)	Study Status	Population (Age range)	Study Duration (weeks, range)	Key Study Designs / Notes
Eteplirsen	9 trials → 2 phase I-II → 6 phase II → 1 phase III	8 Completed 1 Discontinued	0,5–21 y.o.	4–212	IV administration
Golodirsen	3 trials → 1 phase I-II → 1 phase II → 1 phase III	2 Completed 1 Discontinued	6–23 y.o.	48–168	IV administration
Viltolarsen	6 trials → 1 phase I → 1 phase I-II → 3 phase II → 1 phase III	6 Completed	4–16 y.o.	12–192	IV administration
Casimersen	3 trials → 1 phase I → 1 phase II → 1 phase III	2 Completed 1 Discontinued	0,5–23 y.o.	48–144	IV administration
Drisapersen	8 trials → 1 phase I → 1 phase I-II → 3 phase II → 3 phase III	5 Completed 3 Discontinued	5–80 y.o.	17–188	Subcutaneous administration; phase III failed primary endpoint; Discontinued due to dose-limiting toxicity and safety concerns (skin, renal, hematologic)
Vesleteplirsen	1 trial → 1 phase I-II	1 Completed	≥4 y.o.	135	IV administration

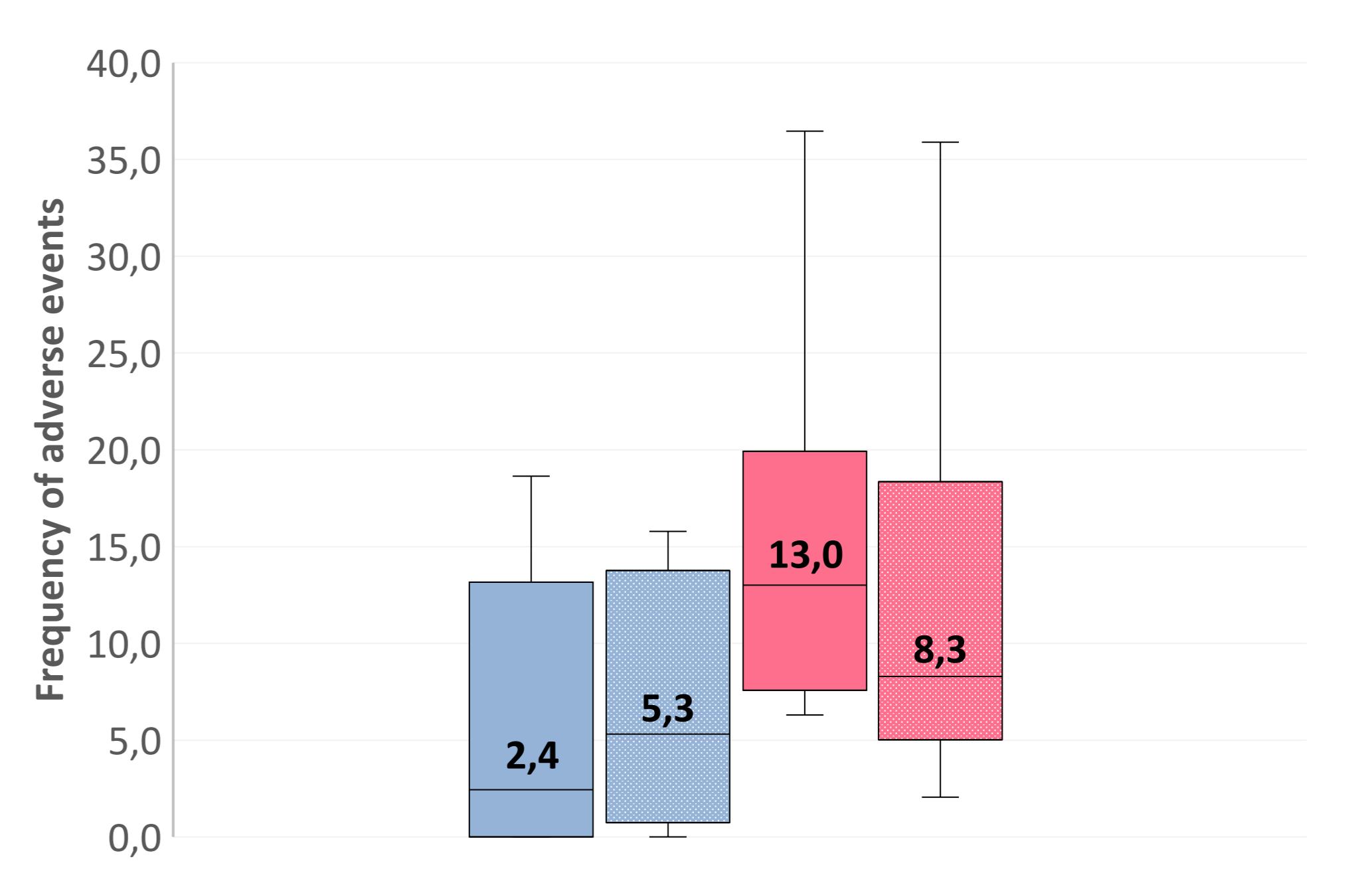

Incidence of renal adverse events in clinical trials involving ASO therapies in DMD

Figure 1: Incidence of renal adverse events for each ASO drug compared to control

- The frequency of renal adverse events is heterogeneous across ASO drugs but seems higher than control.
- Proteinuria account for most of renal toxicity events

Figure 2: Overall incidence of renal adverse events in ASO drugs compared to control

- Nephrotoxicity (mainly proteinuria) is more frequent in ASO-treated arms than control arms.

DISCUSSION

- The incidence of renal toxicity appears higher in ASO-treated patients than in placebo groups, particularly for earlier ASO (Drisapersen).
- Proteinuria → often mild and transient but can signal underlying renal dysfunction.
- Potential driver mechanisms include proximal tubular accumulation, endocytic uptake and lysosomal overload, leading to inflammation.
- Inflammatory triggers (e.g., post-vaccination, infection, steroid use) may transiently modulate ASO pharmacokinetics and exacerbate renal stress.
- These results highlight the need for dynamic pharmacovigilance and renal biomarker monitoring during ASO therapy.

CONCLUSION

- ASO therapies are a key precision medicine approach in DMD but require rigorous renal safety monitoring.
 - Most renal events are mild and reversible, yet their frequency requires systematic screening.
 - Recommended monitoring: proteinuria, serum creatinine, cystatin C, electrolytes, and urinary biomarkers.
- The challenge is to balance molecular efficacy with renal safety through optimized dosing, schedule of administration and patient-specific risk assessment.
- Future trials should aim to identify predictive biomarkers of renal risk and standardize renal safety protocols across DMD trials.