

# Automating PICOS Criteria Assessment in Systematic Reviews with LLMs: Insights From Two Case Studies

Theodora Oikonomidi<sup>1</sup>, Lenon Mendes<sup>2</sup>, Ketevan Rtvveladze<sup>3</sup>, Inês Guerra<sup>3</sup>

<sup>1</sup>IQVIA, Athens, Greece; <sup>2</sup>IQVIA, Chicago, US; <sup>3</sup>IQVIA, London, United Kingdom

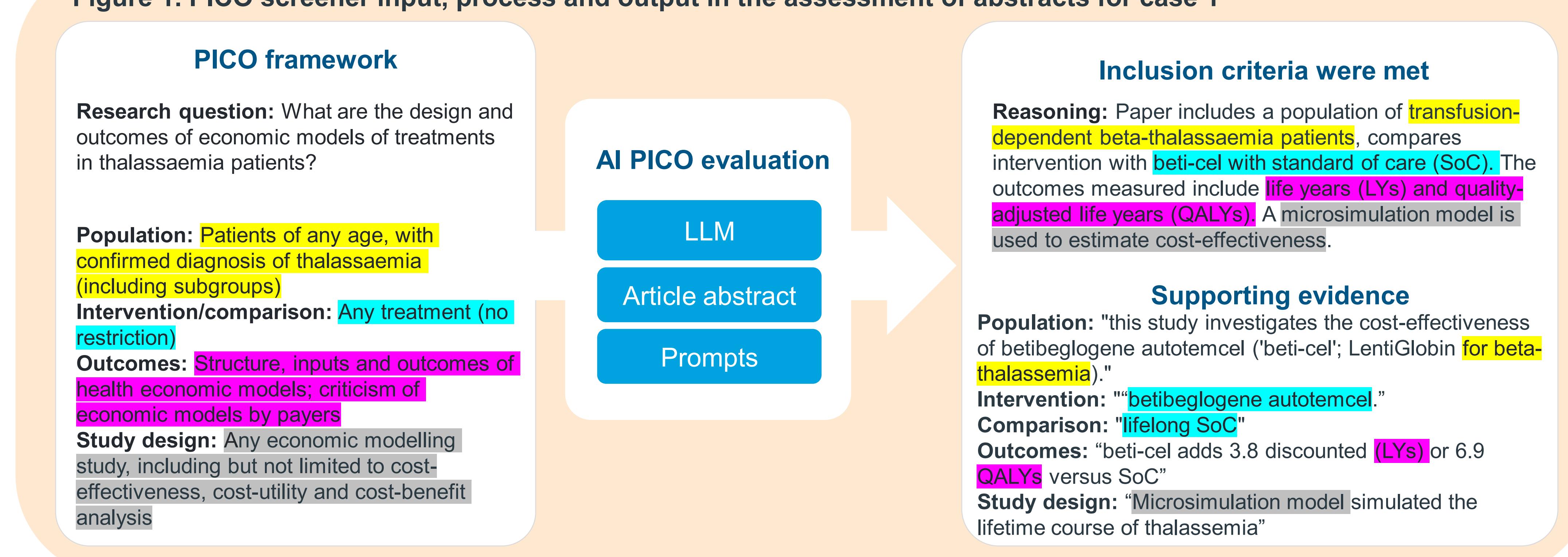
MSR42

IQVIA

## OBJECTIVES

- Study selection for inclusion in systematic literature reviews (SLRs), based on prespecified population, intervention, comparison, outcome, and study design (PICOS) criteria is fundamental to evidence synthesis. However, this process is labour-intensive and time-consuming.
- This proof-of-concept (POC) study evaluates the performance of a large language model (LLM) in assessing whether scientific article abstracts meet PICOS criteria.

Table 1. Key aspects of SLR test cases


|                  | Test case 1                               | Test case 2                                                                                 |
|------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| Disease area     | Thalassaemia                              | Muscle-invasive bladder cancer                                                              |
| Eligible studies | Economic modelling studies, relevant SLRs | Economic modelling studies, cost and health care resource use (HCRU) studies, relevant SLRs |
| Abstracts (N)    | 833*                                      | 1,715*                                                                                      |

\*Abstracts eligible for screening by the PICOS screener; excludes search results where only the title was available.

## METHODS

- A prompt was developed to identify PICOS elements in titles and abstracts (Figure 1).
- Subject matter experts (SMEs) tested how accurately this prompt categorised abstracts for inclusion/exclusion compared to a manual gold standard (i.e., decisions by two humans). Two completed economic SLRs were used as test cases (Table 1).
- Sensitivity (i.e. the ability of the LLM to correctly classify included studies), specificity (i.e. the ability of the LLM to correctly classify excluded studies), precision (i.e. proportion of classified includes that were correct) and accuracy (i.e. proportion of total correctly classified abstracts) were calculated. LLM/human decision discrepancies were analysed by a SME.

Figure 1. PICO screener input, process and output in the assessment of abstracts for case 1



## RESULTS

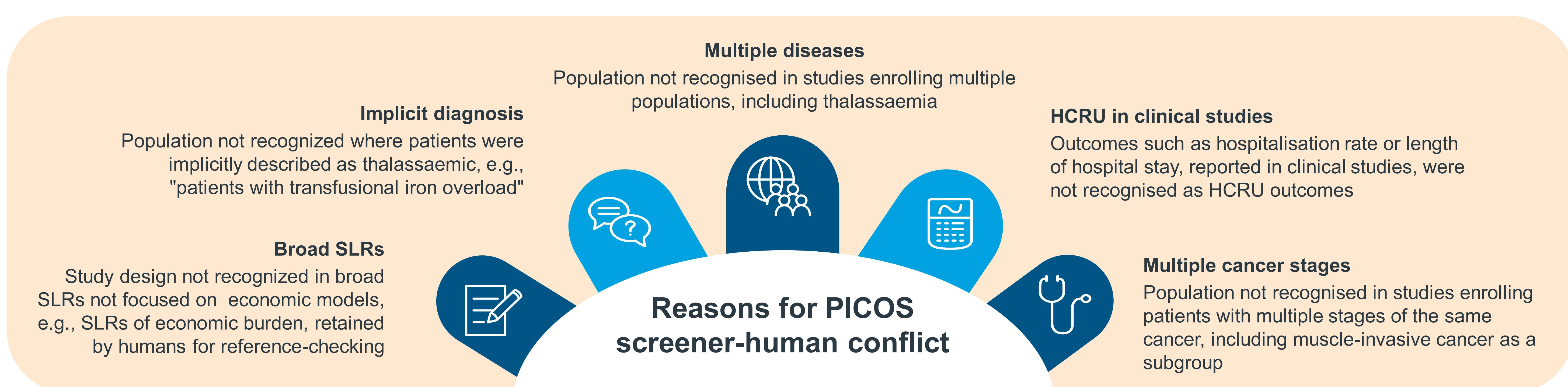
- Across the two cases, sensitivity ranged from 67% to 80% and specificity from 97% to 98%.
- Precision ranged from 73% to 78% and accuracy from 92% to 97%.
- In test case 1, the LLM correctly included 80% of the 46 abstracts included by humans (Table 2); nine abstracts were misclassified as excluded by the LLM. This error had minimal impact on final inclusions, as none of the nine abstracts were included after full-text review.
- In test case 2, the LLM correctly included 67% of the 258 abstracts included by humans (Table 3); 85 abstracts were misclassified as excluded by the LLM. Of the 85 abstracts, 19 were later included after full-text review.
- Analysis of the LLM's exclusion rationale (Figure 2) revealed that in most cases, incorrect exclusions were due to misclassification of the study design or the population.
- The findings suggest that refining the prompt PICOS could enhance performance (e.g. by providing definitions of economic/HCRU study designs, or providing precise instructions for the handling of 'grey area' studies with mixed populations)

Table 2. PICOS screener accuracy – test case 1

| PICOS screener decision |         |         |     |
|-------------------------|---------|---------|-----|
|                         | Include | Exclude |     |
| Human decision          | Include | 37      | 9   |
|                         | Exclude | 14      | 773 |

80% sensitivity

98% specificity


Table 3. PICOS screener accuracy – test case 2

| PICOS screener decision |         |         |       |
|-------------------------|---------|---------|-------|
|                         | Include | Exclude |       |
| Human decision          | Include | 173     | 85    |
|                         | Exclude | 49      | 1,408 |

67% sensitivity

97% specificity

Figure 2. Analysis of abstracts excluded by the PICOS screener, but included by humans



## CONCLUSIONS

- LLM performance in identifying PICOS elements and making inclusion decisions at the abstract level is promising. Importantly, missed inclusions might be minimised by further elaborating PICOS criteria (e.g., by providing definitions of the study designs of interest, instructions for 'grey area' study selection such as handling studies with population subgroups) and/or providing examples of relevant studies.
- Future work should focus on developing and prospectively validating integrated workflows that incorporate LLMs alongside human reviewers in the SLR process.

Abbreviations: GenAI: Generative Artificial Intelligence; HCRU: Health care resource use; LLM: Large language model; LY: Life year; PICOS: Population, intervention, comparison, outcome, study design; POC: Proof-of-concept; QALY: Quality-adjusted life year; SLR: Systematic literature review; SME: Subject matter expert; SoC: Standard of care; UK: United Kingdom.

Correspondence: Inês Guerra (Ines.Guerra@iqvia.com)