
● In rare or slowly progressing diseases, or where ethical considerations limit the use of placebo controls, large randomized controlled trials are often infeasible.1-3 Consequently, limited data can increase 
uncertainty around the estimated treatment effects (TEs), delaying regulatory approval and patient access to effective therapies.4 To optimize trial efficiency, researchers frequently rely on composite or 
surrogate endpoints, adaptive designs, or external control arms.5-7

● Bayesian methods have gained traction for improving the estimation and interpretation of TEs by integrating prior information and adapting dynamically to new data.8-16 Among these, Bayesian Dynamic 
Borrowing (BDB) provides a principled framework for incorporating historical data while adjusting the extent of borrowing based on the similarity between historical and new trial data.17-18

● BDB has been applied across diverse contexts, including pediatric extrapolation, rare disease trials, subgroup analyses, and health technology assessments, to strengthen evidence and reduce uncertainty 
in treatment effect estimates.19-21

● In this study we demonstrate the application of BDB as a method to enhance precision in estimating TEs for underpowered efficacy components of a composite endpoint. 
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• While maintaining the point 
estimate, BDB narrowed CI in 
hypothetical New Trials: RMS from 
0.60 (95% CI 0.36–1.00) to 0.61 
(95% CrI 0.45–0.79); PPMS from 
0.70 (95% CI 0.49–1.00) to 0.70 
(95% CrI 0.54–0.90).

Note: Schoenfeld approximation27 was used to translate the reduction in posterior SD achieved with BDB into the number of 
additional CDP-EDSS (one dot = 1 event); See QR Code for link to Poster Abstract and Supplementary Materials for outputs in tabular 
format. BDB = Bayesian Dynamic Borrowing; SD = Standard Deviation.

Trial Setting Mean HR Bias SD Type I Error
RMS 0.993 -0.007 0.240 6.41%
PPMS 0.955 -0.005 0.160 4.20%

BDB: BDB TE ESTIMATE EQUAL TO NEW TRIAL BUT WITH LOWER UNCERTAINTY

SIMULATIONS: BDB YEILDED UNBIASED TE ESTIMATE WITH REDUCED VARIABILITY AND MINIMAL TYPE I ERROR INFLATION

Note: Table shows results of simulation experiments (n = 10,000) to evaluate the performance of BDB in controlling type I error under 
the null hypothesis of no treatment effect (HR = 1). For each iteration, pairs of TE estimates for CDP-T25FWT and CDP-EDSS were 
drawn from a bivariate normal distribution using trial-specific variances and a correlation of 0.8 between endpoints. BDB was 
applied to each simulated dataset, with bias defined as the mean log HR minus 0 and type I error as the proportion of simulations 
where the upper bound of the 95% CrI for the log HR was < 0; See QR Code for link to Poster Abstract and Supplementary Materials 
for outputs in tabular format; BDB = Bayesian Dynamic Borrowing; CrI = Credible Interval; HR = Hazard Ratio; PPMS = Primary 
Progressive Multiple Sclerosis; RMS = Relapsing Multiple Sclerosis; SD = Standard Deviation.

LEAVE ONE OUT CROSS-VALIDATION: BDB LIMITED BIAS vs META-REGRESSION AND REDUCED UNCERTAINTY BY AS MUCH AS 19%
• Unlike meta-regression, BDB TE 

estimates consistently matched 
NEW TRIAL.
• BDB reduced uncertainty modestly 

(1–7%) when observed and 
predicted effects deviated (i.e.
AFFIRM, ASCEND, EXPAND), but 
substantially (10–19%) when they 
aligned (i.e. INFORM, PROMISE) or 
when trial data were less mature                   
(i.e. OLYMPUS, OPERA II).

Note: Table shows results from a leave-one-trial-out cross-validation to evaluate BDB on empirical trial data. For each historical 
trial, a prediction model was fitted excluding that trial, and BDB was then applied to estimate the TE on CDP-EDSS and its 95% 
CrI; Each dot is TE from each historical trial. See QR Code for link to Poster Abstract and Supplementary Materials for outputs in 
tabular format. BDB = Bayesian Dynamic Borrowing; HR = Hazard Ratio; CI = Confidence Interval; CrI = Credible Interval.

LEAVE ONE OUT CROSS-VALIDATION: BDB REDUCTION IN SD IS EQUIVALENT TO UP TO 42% GAIN IN NUMBER OF EVENTS 

Reduction in uncertainty of TE 
estimates from BDB roughly 
translates to an increase in the 
number of events by over 20% in 
OLYMPUS, INFORMS, OPERA II, and   
as much as 42% in PROMISE.

NEW TRIAL
TE Intermediate & Final Outcomes

HISTORICAL TRIALS
TE Intermediate & Final Outcomes

STEP 1: PREDICT TE on Final Outcome
Meta-regression 

TE Final Outcome = f(TE Intermediate Outcome)

STEP 2A: CONSTRUCT MIXTURE PRIOR
Weighted average of Informative & Skeptical Prior

STEP 2B: UPDATE PRIOR TO CONSTRACT POSTERIOR
New Trial TE Final Outcome 

STEP 3: GENERATE BAYESIAN INFERENCE FROM POSTERIOR
Posterior mean/ median and 95% CrI

STEP 4: ASSESS OPERATIONAL CHARACTERISTICS
Cross-Validation and Simulation to Assess Bias and Type I Error

Assess agreement

HIGH →More Informative Prior → Larger weight on predicted TE 

LOW →More Sceptical Prior → Smaller weight on predicted TE 

PREDICTION
TE Final Outcome

NEW TRIAL
TE Final Outcome

CDP-EDSS

CDP-T25FT

CDP-9HPT

BDB supports interpretation of clinically meaningful components, improving 
confidence in efficacy signals without biasing effect magnitude.

Simulations and empirical analyses demonstrated that BDB reduced uncertainty 
while maintaining low bias and controlling Type I error.

BACKGROUND AND OBJECTIVE

METHODS

FIGURE 1. HIGH-LEVEL DEPICTION OF BDB METHODOLOGY

This methodology is practical, transparent, and applicable with aggregate-level data. 
Appropriate allowance for correlation and associated uncertainty induced by multiple 
data sources informing different components of the model can be achieved using MCMC.

As regulatory and HTA bodies increasingly embrace Bayesian methods, BDB is an 
attractive approach to enhance evidence synthesis and accelerate decision-making.

CONCLUSIONS

Note: The assumed TE (HR (95% CI)) for the New Trials were 0.8 ( 0.64-1.0) and  0.6 (0.45-0.80) for CDP-T25FWT and 0.6 (0.36-
1.0) and 0.7 (0.49-1.0)  for CDP-EDSS in RMS and PPMS respectively; BDB-augmented TE estimates were derived following the 
methodology illustrated in Fig 1. BDB = Bayesian Dynamic Borrowing; HR = Hazard Ratio; PPMS = Primary Progressive Multiple 
Sclerosis; RMS = Relapsing Multiple Sclerosis; CI = Confidence Interval; CrI = Credible Interval.

CASE STUDY: Multiple Sclerosis

RESULTS

• BDB mean HR ≈ 1 → bias ≈ 0.
• BDB reduced variability in TE 

estimates (SD from 0.261→0.240   
in RMS; 0.182→0.160 in PPMS).

• Type I error minimally inflated.

• The broad use of highly effective therapies reduced event rates in conventional 
multiple sclerosis (MS) disability measures (i.e. CDP-EDSS),21 prompting clinical 
programs to adopt composite confirmed disability progression (cCDP) as the 
primary efficacy endpoint.22-25

• New trials are powered for cCDP but not its individual components. Of these, TE 
on CDP-EDSS component is of particular interest to decision-makers as it is the 
main contributor to disability accumulation and related costs.7

• BDB was applied to hypothetical MS trials to improve precision of TE estimate on 
CDP-EDSS (Final Outcome) by leveraging the correlation between TE CDP-EDSS 
and TE CDP-T25FWT(Intermediate Outcome) and historical data.26
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FIGURE 2. CDP-EDSS HR and 95% CI/ CrI New Trial and BDB-augmented

FIGURE 3. CDP-EDSS HR and 95% CI/ CrI obtained from Prediction (meta-regression) and BDB

FIGURE 4. Number of CDP-EDSS events in New Trial and additional events with BDB

TABLE 1. SIMULATED BDB UNDER NULL TREATMENT EFFECT: BIAS AND TYPE I ERROR
BDB POSTERIOR DISTRIBUTION FOR TE
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βE is the true TE 
መ𝜃𝐸 is the estimator of TE in the New Trial 

𝜇𝑃 is the mean of the Mixture Prior distribution above
𝜎𝑃
2 is the variance of the Mixture Prior above
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ϒ > 0 is a- weighting parameter, selected through simulation to balance precision gains
and control type I error, that controls the extent to which IP is discounted

𝜃𝐸 is TE estimate in New Trial
𝜎𝐸
2 is variance of estimator of TE in the New Trial

ො𝑦 is a Prediction of the TE on Final Outcome in the New Trial (Step 1)
𝜎𝑆
2 is an unknown, to be specified, variance parameter 
𝑉𝑎𝑟 ො𝑦 is the variance of the estimator for ො𝑦

𝜎𝑅
2 is the squared residual SE from the prediction model

EXAMPLE CHOICE OF PRIOR AND POSTERIOR DISTRIBUTION

Poster and SM R code
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