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INTRODUCTION & OBJECTIVES

- Data extraction is one of the most time and resource intensive steps in evidence
generation process

- Leveraging Large Language Models (LLMs) can significantly streamline this
process by reducing manual effort and improving efficiency

- This study aimed to evaluate a generative Al powered tool developed to extract
structured information from unstructured data sources (Regulatory submissions,
clinical study publications and guidelines) which are commonly used in health

technology assessment (HTA) and Health economics outcomes research
(HEOR)

METHODS
- The tool was developed using Python with AWS Amazon web services (AWS)

Bedrock for language model processing retrieval-augmented generation (RAG)
for unstructured data and PostgreSQL for structured data storage (Figure 1)

- Data from 20 publicly available publications of randomized controlled trials
(RCTs) on diabetes, focusing on efficacy and safety outcomes were uploaded in
RAG

- The uploaded files were standardized, where text content was converted into
markdown format and tables and images were extracted and organized
separately

- Custom extraction tables were defined by specifying field names (e.g., "Age”,
"Sample size"), data types (e.g., numerical, categorical), and extraction
instructions (e.g., “extract mean age for all treatment groups”)

- For each defined field in the extraction tables, RAG identified the most relevant
chunks across the selected documents to ensure accurate data capture

- Claude 3.7 Sonnet read the retrieved chunks, extracted the appropriate values,
and formatted them according to the specifications provided for each document

- The extracted data was compiled into tables and exported as Excel workbooks,
with structured data stored in PostgreSQL for long-term retention (Figure 2)

- Results were exported as Excel workbooks and validated by subject matter

experts (SMEs) for completeness, clarity, and traceability of the extracted data
(Figure 3)

RESULTS
Figure 3: Visualization of data extraction table in tool
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v" RAG-assisted Al bridges automation and human expertise
to create a new standard in evidence generation, I.e.,
transparent, auditable, and scientifically rigorous

v |t accelerates data extraction, enables dynamic PICO
simulations (for JCA and beyond), and streamlines data
for ITC/NMA, reporting, dossiers, and modeling workflows,
delivering unmatched speed and accuracy
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Figure 1: Schematic diagram of data extraction process

Upload
data

Data
pre-processing
&

RAG pipeline

Others
\

“Automated extraction and report-ready

tables”

X 3

Figure 2: Technical workflow of the Textractor
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~120 minutes per document,
sequential handling

Large volume-short
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The likelihood of errors
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Parallel throughput processes
multiple documents
simultaneously with rapid
turnaround ~4 minutes/doc from
document uploading to extraction

Al Consistency

High accuracy with uniform,
structured output and
automated schema validation

Reduces Hours to minutes
Significant time & cost savings,
reducing hours to minutes with
LLM-powered extraction
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- Three separate data extraction

tables were generated,

capturing study

characteristics, patient demographics, treatment details, clinical and economic

outcomes

SMEs verified that all data points related to study and patient characteristics were
extracted with 100% accuracy, and complete traceability to the source documents
A minor issue was noted in the clinical outcomes table, where the names of two
secondary outcomes initially missing but were subsequently corrected manually
Overall, SMEs confirmed that the tool effectively extracted structured data, enabling
users to download analysis ready Excel workbooks and reduce manual effort by

approximately 70% (Figure 4)

The tool demonstrated strong potential to significantly reduce manual effort and save time by flexibly extracting data into user-defined tables.
Its capability to download analysis-ready Excel outputs, further enhances the usability, supporting streamlined data processing across

multiple workflows in HEOR including but not limited to reporting, model adaptation, and indirect treatment comparison
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