

Targeted Literature Review Informing Economic Model Structures in Atherosclerotic Cardiovascular Disease

Luiz Causin, MS¹, Kirk Szafranski, MSc², Maria Caiado, MSc¹, Sandra Vigelis, MBiotech², Juliette Neyra, PharmD³, Pamela Vo, MS, PharmD⁴,
¹Novartis Pharmaceuticals UK Ltd, London, United Kingdom, ²EVERSANA, Burlington, ON, Canada, ³Novartis Pharmaceuticals Canada Inc, Montreal, QC, Canada, ⁴EVERSANA, Basel, Switzerland.

This study was sponsored by Novartis. L. Causin, M. Caiado, and J. Neyra are employees of Novartis. K. Szafranski, S. Vigelis, and P. Vo are employees of EVERISANA. EVERISANA receives consultancy fees from pharmaceutical and device companies, including Novartis.

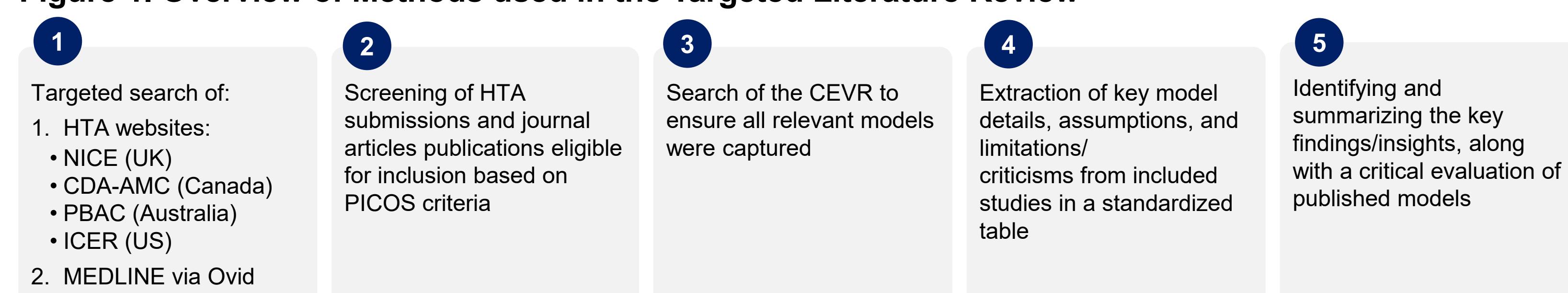
Poster presented at the Professional Society for Health Economics and Outcomes Research (ISPOR) Europe 2025 (9-12 November) at Glasgow, Scotland, UK.

KEY FINDINGS & CONCLUSIONS

- A total of 83 records were included in this literature review, of which 56 records were selected for data extraction and analysis.
- Markov cohort models were the predominant model structure in both HTA submissions (89%) and journal articles (85%) in ASCVD.
- Although the choice of model structure used in HTA submissions in ASCVD tends to follow the precedence of previous ASCVD submissions (ie, Markov cohort), other types of model structures are also feasible and can be accepted by HTA agencies. In contrast, a greater diversity of model structures in ASCVD is present in published journal articles.
- Ultimately, the choice of model structure depends on the specific decision problem and limitations of the data source.

INTRODUCTION

- Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of morbidity and mortality worldwide, affecting more than 380 million people.^{1,2} As of 2015, cardiovascular (CV) disease accounted for approximately one-third of all deaths globally, with 85% resulting from myocardial infarction or stroke.²
- Both a chronic and progressive disease, ASCVD is characterized by the accumulation of lipids and fibrous material within the arteries, resulting in the formation of atherosclerotic plaques.³ These plaque formations can ultimately lead to CV events, such as stroke.^{3,4} A major causal factor of ASCVD is elevated lipid levels, such as low-density lipoprotein cholesterol (LDL-C).⁵
- The current standard of care for ASCVD consists of lipid-lowering therapies, including statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9is); however, despite treatment, LDL-C levels often remain high, with only <30% of patients with ASCVD achieving guideline-recommended reductions in LDL-C.⁶

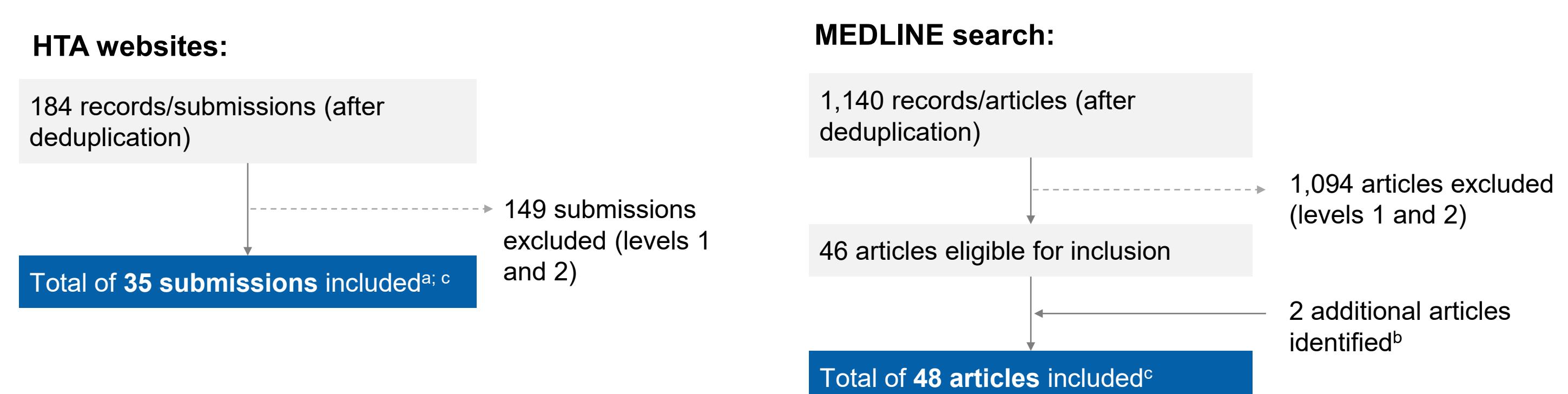

OBJECTIVE

- To conduct a targeted literature review (TLR) to identify, characterize, and critically appraise published cost-effectiveness models (CEMs) in ASCVD from key health technology assessment (HTA) agencies and journal articles.

METHODS

- A TLR was performed in October 2024 using HTA agency websites and a MEDLINE database search (Figure 1).
- Pre-defined population, intervention/comparators, outcomes, and study type (PICOS) criteria (Table 1) were employed to screen identified records during the title/abstract (first pass) and full text (second pass) screening.

Figure 1. Overview of Methods used in the Targeted Literature Review

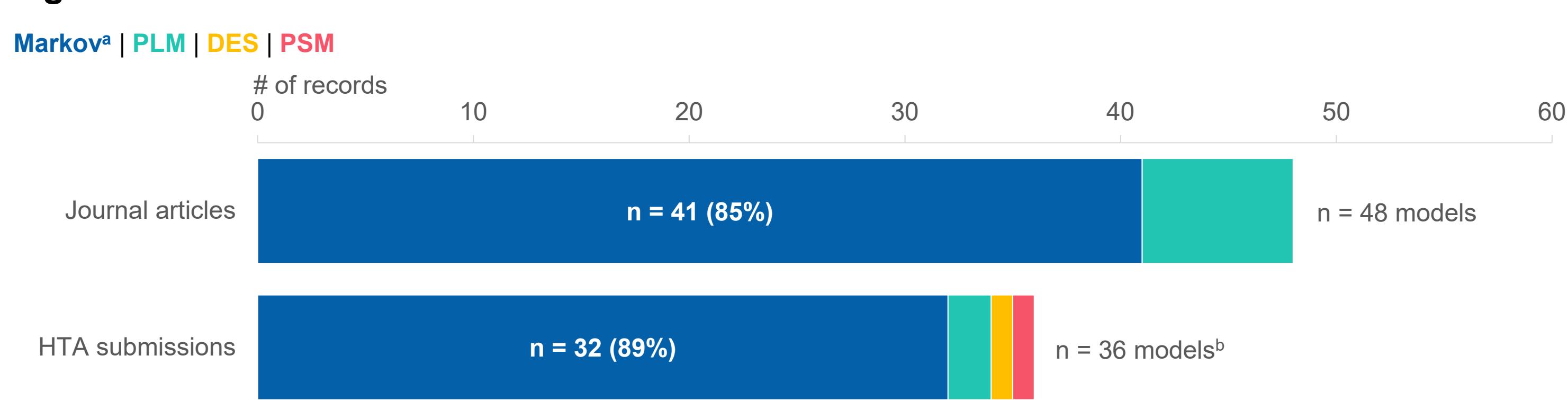


Abbreviations: CDA-AMC = Canada's Drug Agency; CEVR = Center for the Evaluation of Value and Risk; HTA = health technology assessment; ICER = Institute for Clinical and Economic Review; NICE = National Institute for Health and Care Excellence; PBAC = Pharmaceutical Benefits Advisory Committee; PICOS = population, intervention/comparators, outcomes, and study type; UK = United Kingdom; US = United States.

RESULTS

- A total of 35 and 48 records were identified via HTA websites and the MEDLINE search, respectively (Figure 2).

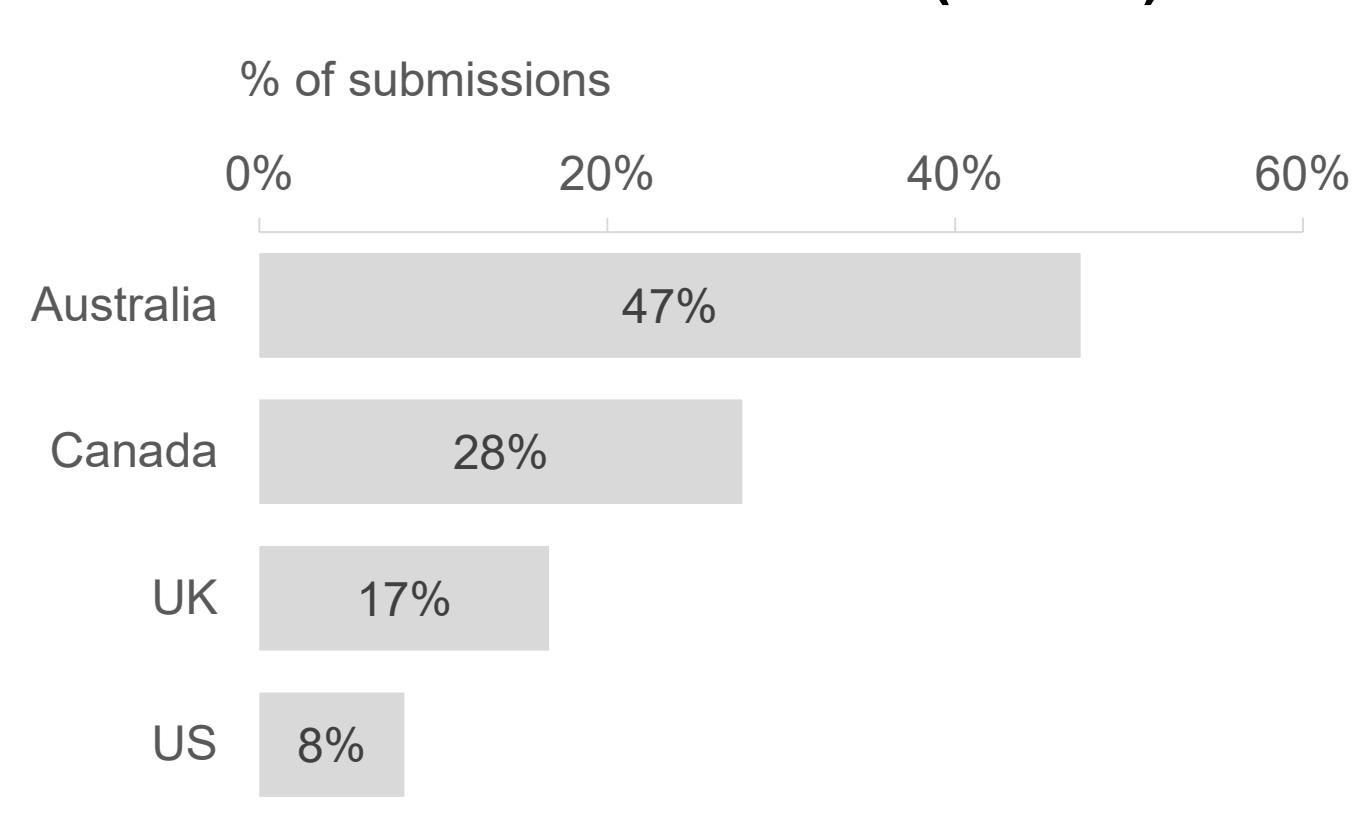
Figure 2. Records Identified via HTA Websites and the MEDLINE Search


^a Includes both initial and resubmissions to HTA agencies. ^b Identified through hand searching economic literature reviews and supplemental search of the CEVR CEA registry. ^c All included submissions (35 submissions) were extracted and analysed, whereas a subset of all included articles (21 articles), were selected for data extraction and analysis.

Abbreviations: CEA = cost-effectiveness analysis; CEVR = Center for the Evaluation of Value and Risk; HTA = health technology assessment.

Detailed Breakdowns of Included/Extracted Models

- The majority of models were Markov cohort in both HTA submissions (89%) and journal articles (85%; Figure 3).
- Nearly half of the HTA submissions were from Australia (47%), followed by Canada (28%), the United Kingdom (UK; 17%), and the United States (US; 8%; Figure 4). In terms of journal articles, the highest proportion were from China (26%), followed by the US (17%), and various other countries (Figure 5).


Figure 3. Breakdown of Model Structures from Included HTA Submissions and Articles

^a Refers to Markov cohort. ^b One submission (ticagrelor submitted to CDA-AMC) included both a Markov cohort and a PLM, which are counted as two separate models.

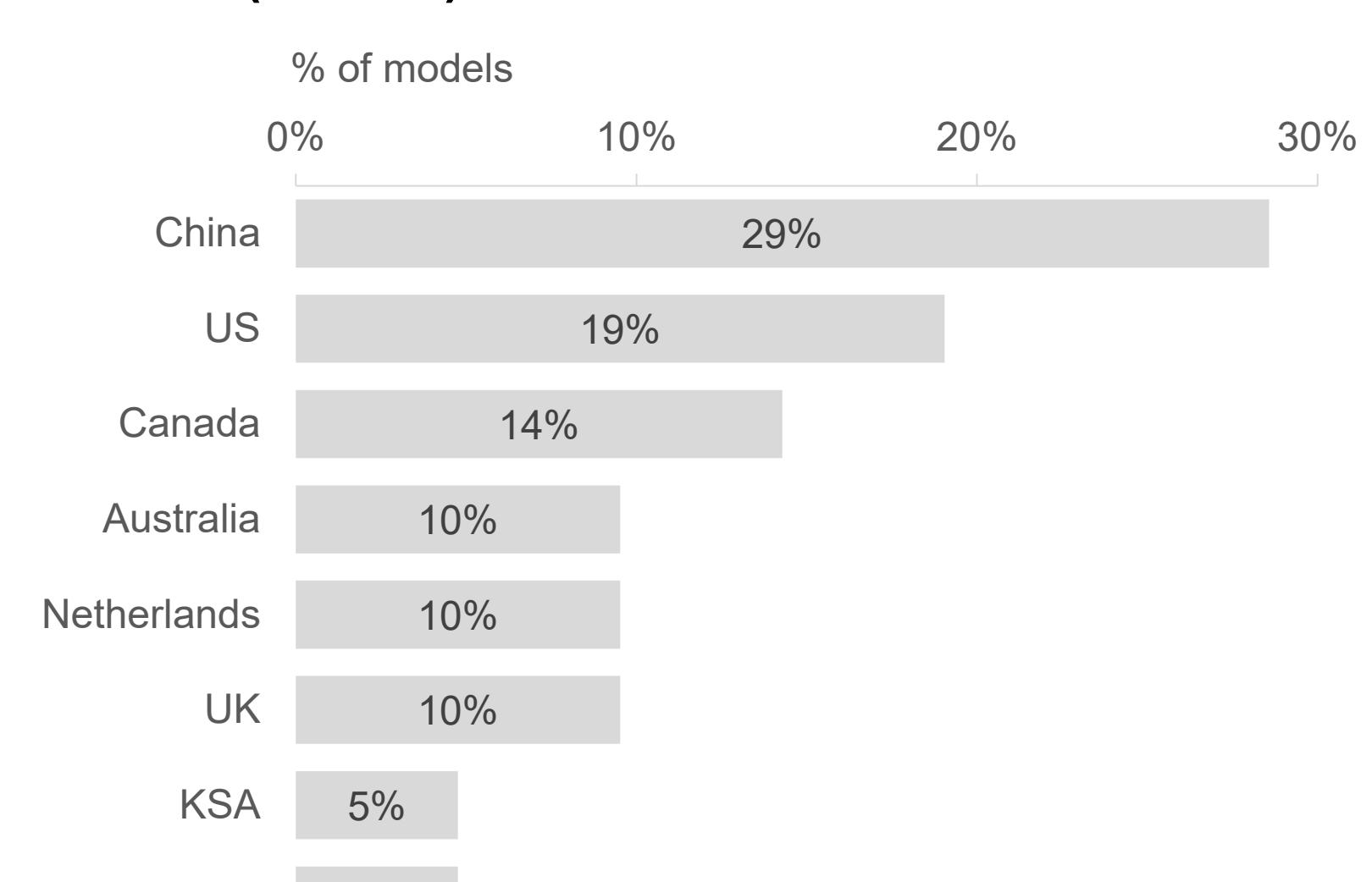

Abbreviations: CDA-AMC = Canada's Drug Agency; DES = discrete-event simulation; HTA = health technology assessment; PLM = patient-level simulation model; PSM = partitioned-survival model.

Figure 4. Breakdown of Countries from Extracted HTA Submissions (n = 35)

Abbreviations: HTA = health technology assessment; UK = United Kingdom; US = United States.

Figure 5. Breakdown of Countries from Extracted Articles (n = 21)

^a A subset of all included articles were selected for data extraction and analysis.
^b Note: "Multiple" consisted of an article that assessed Canada, France, and Germany (n = 1).

Abbreviations: KSA = Kingdom of Saudi Arabia; UK = United Kingdom; US = United States.

Acknowledgements

The authors acknowledge Rachid Rafia (Novartis), as well as Chris Drudge, Alexandra Hall, Sofiya Portuhay, and Allen Zhou (EVERSANA), for supporting content development.

The final responsibility for the content lies with the authors.

References

- Barquera S. Arch Med Res. 2015;46(5):328-338.
- Roth GA. J Am Coll Cardiol. 2020;76(25):2982-3021.
- Lippy P. Nat Rev Dis Primers. 2019;5(1):56.
- Jebani-Bensalman S. Int J Mol Sci. 2022;23(6):3346.
- Ference BA. Eur Heart J. 2017;38(32):2499-2472.
- Underberg J. Postgrad Med. 2022;134(8):752-762.
- CDA-AMC (2016). Ticagrelor.
- Lamy A. Eur Heart J Qual Care Clin Outcomes. 2023;9(5):502-510.
- NICE (2021). Bempedoic acid with ezetimibe. TA694.
- NICE (2016). Alirocumab. TA393.
- NICE (2016). Evolocumab TA394.
- NICE (2021). Inclisiran. TA733.
- NICE (2016). Ezetimibe. TA385.
- NICE (2022). Icosapent ethyl with statin therapy. TA805.
- CDA-AMC (2022). Inclisiran. SR0681-000.
- CDA-AMC (2016). Evolocumab. SR0441-000.
- CDA-AMC (2017). Evolocumab. SR0515-000.
- CDA-AMC (2024). Evolocumab. SR0821-000.
- PBAC (2020). RIVAROXABAN. March 2020.
- PBAC (2020). RIVAROXABAN. July 2020.
- ICER (2019) CVD: Additive Therapies. August 2019.
- Alghamdi A. Pharmacoecon Open. 2022;6(2):277-291.
- Gregoire J. Adv Ther. 2022;39(7):3262-3279.
- Kotsopoulos N. J Med Econ. 2021;24(1):123-130.
- Liang Z. Cardiovasc Drugs Ther. 2021;35(4):775-785.
- Wan Y. Cost Eff Resour Alloc. 2023;21(1):93.
- Xie W. Adv Ther. 2023;40(2):489-503.
- Xi X. Cardiovasc Drugs Ther. 2023;37(5):905-916.
- Weintraub WS. JAMA Netw Open. 2022;5(2):e2148172.
- Burnhill A. J Clin Lipidol. 2024;18(6):e946-956.
- Liang Z. Front Pharmacol. 2021;12:648244.
- Boczar KE. CJC Open. 2024;2(4):441-448.
- Zhou W. Front Pharmacol. 2024;15:1283922.
- Weintraub WS. J Am Heart Assoc. 2024;13(1):e032413.
- Lamy A. Am J Cardiovasc Drugs. 2024;24(1):117-127.
- CDA-AMC (2020) Icosapent Ethyl. November 2023.
- PBAC (2023) ICOSAPENT ETHYL. November 2023.
- PBAC (2024) ICOSAPENT ETHYL. March 2024.

Scan to obtain:

• Poster

<https://medicalcongressposters.com/Default.aspx?doc=71a81>
 Copies of this poster obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission of the authors.