

Diverging Impacts of Evergreening and Biosimilars on Trastuzumab Utilization and Costs in South Korea : Implications for Sustainable Access and Market Competition

Minji Kim, Gyeongseon Shin, SeungJin Bae*

College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea

Introduction

- Biologics remain among the most expensive therapeutic classes, posing persistent challenges to the sustainability of healthcare financing.
- While biosimilars aim to improve affordability, originator companies often employ evergreening strategies, like subcutaneous (SC) formulations, to maintain market share.

Objective

- Using Trastuzumab, South Korea's first approved anticancer biosimilar, this study examines how these competing strategies shaped utilization trends, market restructuring, and healthcare expenditures.

Statistical analysis

- We conducted segmented regression analyses using ARIMA/SARIMA models.
- Optimal model specifications were selected using the auto.arima() function from the R forecast package.
- All statistical tests were two-tailed, and p-values less than 0.05 were considered statistically significant.

Results

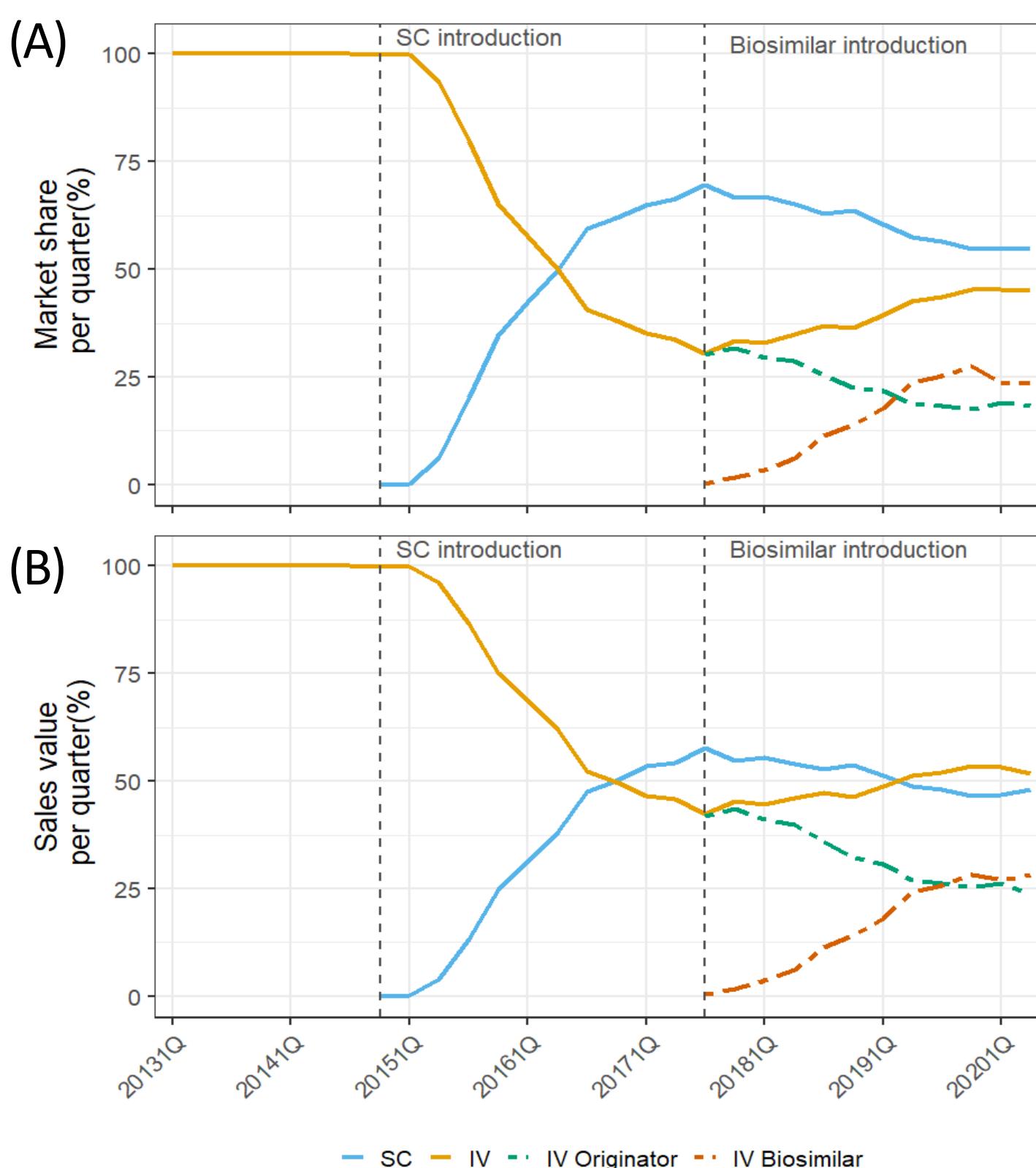


Figure 1. Quarterly trastuzumab market share and sales value (%) in South Korea using IQVIA-MIDAS (2013Q1–2020Q2)

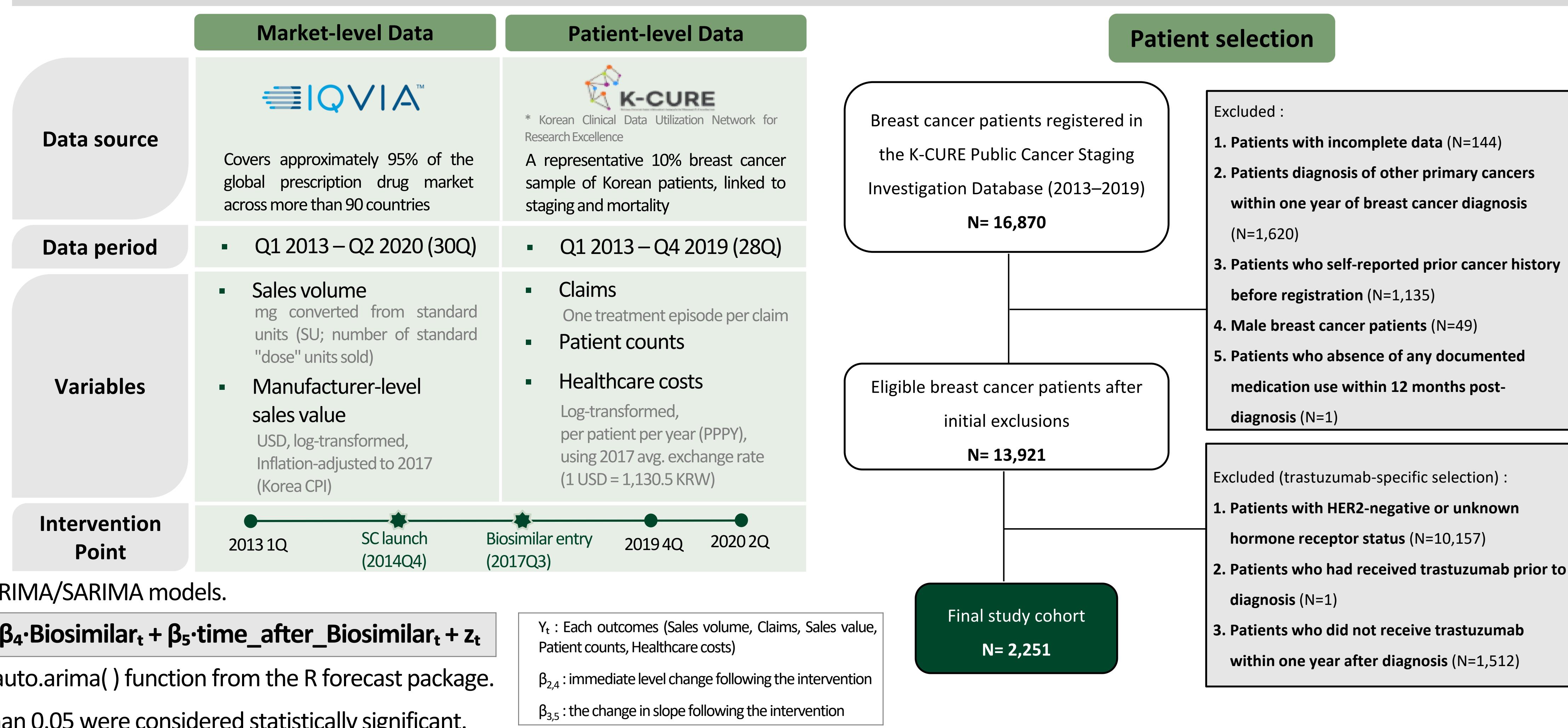
Key Findings Summary

- SC introduction maintained 54% dominance despite biosimilar competition.
- IV biosimilars achieved limited recovery while SC preserved substantial value share.
- Market expansion through segmentation rather than substitution, with biosimilars competing within existing IV segments.

Table 1. Segmented regression estimates of quarterly changes in trastuzumab utilization following the introduction of subcutaneous (SC) formulation and intravenous (IV) biosimilar entry

Segmented Term	Trastuzumab sales volume (1,000mg/quarter)				Patient-level Trastuzumab utilization	
	Total	IV	IV originator	SC‡	Total claims	Number of patients
Slope before intervention	210.109**	233.336*	214.570*	698.520***	1.626	2,442
Introduction of SC Trastuzumab†						
Step change after intervention	-275.323	581.266	743.950**	-	82.914***	12,571
Slope change after intervention	190.148**	-645.279***	-647.430***	-	26.596**	6,285*
Introduction of Trastuzumab biosimilar‡						
Step change after intervention	-1593.320***	-778.842**	-291.740	338.180	-19.626	-5,566
Slope change after intervention	106.815***	754.099***	389.640***	-631.100**	-24.645***	-7,220***

- ARIMA specification: Total trastuzumab = (3,0,0); IV Trastuzumab = (0,1,0)(0,0,1); IV originator = (0,1,0); SC = (0,1,0); Total claims = (2,1,0)(2,0,0); Number of patients = (3,1,0)(1,0,0)


- † SC formulation was introduced in Q4 2014; the first biosimilar was introduced in Q3 2017.

- ‡ SC trastuzumab was available from Q4 2014 to Q2 2020.

- * p < 0.05, ** p < 0.01, *** p < 0.001

- Abbreviation: SC = Subcutaneous; IV = Intravenous

Methods

Utilization Impact of SC Introduction

- IV sales volume steadily declined following SC introduction
- SC sales rapidly increased, surpassing IV in Q3 2016
- SC peaked at 69.6% market share just before biosimilar entry
- Total trastuzumab**: Significant slope increase (190,148 mg/quarter) of total sales volume following SC introduction
- IV trastuzumab**: Trend shifted from growth to significant decline (-645,279 mg/quarter)
- SC trastuzumab**: Sharp growth acceleration (+698,520 mg/quarter)
- Claims**: Steeper slope increase (+26,596 claims/quarter)
- Patient counts**: Positive slope increase (+6,285 patients/quarter)

Utilization Impact of Biosimilar Introduction

- IV experienced partial recovery, reaching 45.3% market share by Q1 2020
- IV biosimilars overtook IV originator in Q2 2019 (biosimilar: 23.8% vs. originator: 18.8%)
- SC maintained dominance with 54% market share in 2020
- Total trastuzumab**: Additional slope acceleration (+106,815 mg/quarter)
- IV trastuzumab**: Trend reversal with sustained recovery (+754,099 mg/quarter)
- SC trastuzumab**: Growth rate markedly slowed but slope remained positive (+67,420 mg/quarter)
- Claims**: Decline in growth rate (-24,645 claims/quarter)
- Patient counts**: Slope decrease (-7,220 patients/quarter)

Expenditure Impact of SC Introduction

- SC rapidly gained value share, surpassing IV in Q4 2016
- SC stabilized above USD 9 million per quarter
- IV sales value showed continuous decline
- Total trastuzumab**: Market value reversed with slope decline (-4.5% per quarter)
- IV trastuzumab**: Significant slope decline (-12.54% per quarter), shifting from growth to sustained decrease
- SC trastuzumab**: Sharp initial growth (+89.65% per quarter)
- Total per-patient-per-year & Breast cancer-related expenditure**: Maintaining previous upward trends

Expenditure Impact of Biosimilar Introduction

- Biosimilars reached 28.2% of total market value by Q4 2019
- SC maintained substantial value share (48.2% by Q2 2020)
- IV biosimilars overtook IV originator by Q4 2019
- Total trastuzumab**: Slope recovery (+3.25% per quarter)
- IV trastuzumab**: Partial offset by biosimilar entry (+5.97% slope increase)
- SC trastuzumab**: Significant deceleration (-56.0% slope decrease)
- Total per-patient-per-year**: Slope increases (+1.11% per quarter)
- Breast cancer-related expenditure**: Sustained growth acceleration (+1.41% slope increase per quarter)

Table 2. Segmented regression estimates of quarterly changes in trastuzumab expenditure following the introduction of subcutaneous (SC) formulation and intravenous (IV) biosimilar entry

Segmented Term	Trastuzumab sales value (log-transformed)				Patient-level healthcare expenditure	
	Total	IV	IV originator	SC‡	Total	Breast-cancer related
Slope before intervention	0.035**	0.034	0.037*	0.640***	0.012***	0.0127***
Introduction of SC Trastuzumab†						
Step change after intervention	-0.004	0.071	0.138	-	-0.022	-0.018
Slope change after intervention	-0.046***	-0.134***	-0.142***	-	-0.003	-0.003
Introduction of Trastuzumab biosimilar‡						
Step change after intervention	-0.159***	-0.167*	0.0004	0.055	0.043*	0.003**
Slope change after intervention	0.032***	0.131***	0.058***	-0.822**	0.011***	0.014***

- ARIMA specification: Total trastuzumab = (3,0,0); IV Trastuzumab = (0,1,0)(0,0,1); IV originator = (0,1,0); SC = (0,1,0); Total healthcare cost = (2,0,0)(1,0,0); Breast cancer related healthcare cost = (2,0,0)(1,0,0)

- † SC introduction occurred in 2014Q4; first biosimilar introduced in 2017Q3.

- ‡ SC Trastuzumab was available from Q4 2014 to Q2 2020.

- * p < 0.05, ** p < 0.01, *** p < 0.001

- Abbreviation: SC = Subcutaneous; IV = Intravenous

Conclusions

- SC reformulation created new market segments and increased utilization, whereas biosimilars competed within existing IV markets with limited impact.
- Without demand-side policies complementing South Korea's price-linking approach, biosimilar cost-saving potential remains constrained by evergreening strategies.
- Balanced policies supporting both innovation and sustainable competition are essential.

References

Richardson, E., et al., Health policy brief: biosimilars. *Health Affairs*, 2013; p. 1-5.

IQVIA, IMS MIDAS User Guide: IMS MIDAS Quantum Help. 2019, IQVIA.

Kirshner, G., et al., The impact of an 'evergreening' strategy nearing patent expiration on the uptake of biosimilars and public healthcare costs: a case study on the introduction of a second administration form of trastuzumab in The Netherlands. *Eur J Health Econ*, 2024; 25(7): p. 1147-1163.

Evergreening: Analysis of Evergreening and Policy Options – Dutch National Healthcare Institute. 2023, SRM/Strategies in Regulated Markets.

Schaffer, AL, TA Dobbins, and S.A. Pearson, Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. *BMC Med Res Methodol*, 2021; 21(1): p. 58.

Wagner, A.K., et al., Segmented regression analysis of interrupted time series studies in medication use research. *J Clin Pharm Ther*, 2002; 27(4): p. 299-309.

Troen, P., et al., The impact of biosimilar competition in Europe. 2022, IQVIA.