Systems-level Modelling Approaches For Complex Health Technologies: A Systematic Review

B. ZWART¹, M. LEUSDER¹, J. VERWEY^{1, 2}, S. SÜLZ¹, M. IJZERMAN¹

¹Erasmus School of Health Policy & Management, Erasmus University Rotterdam, The Netherlands

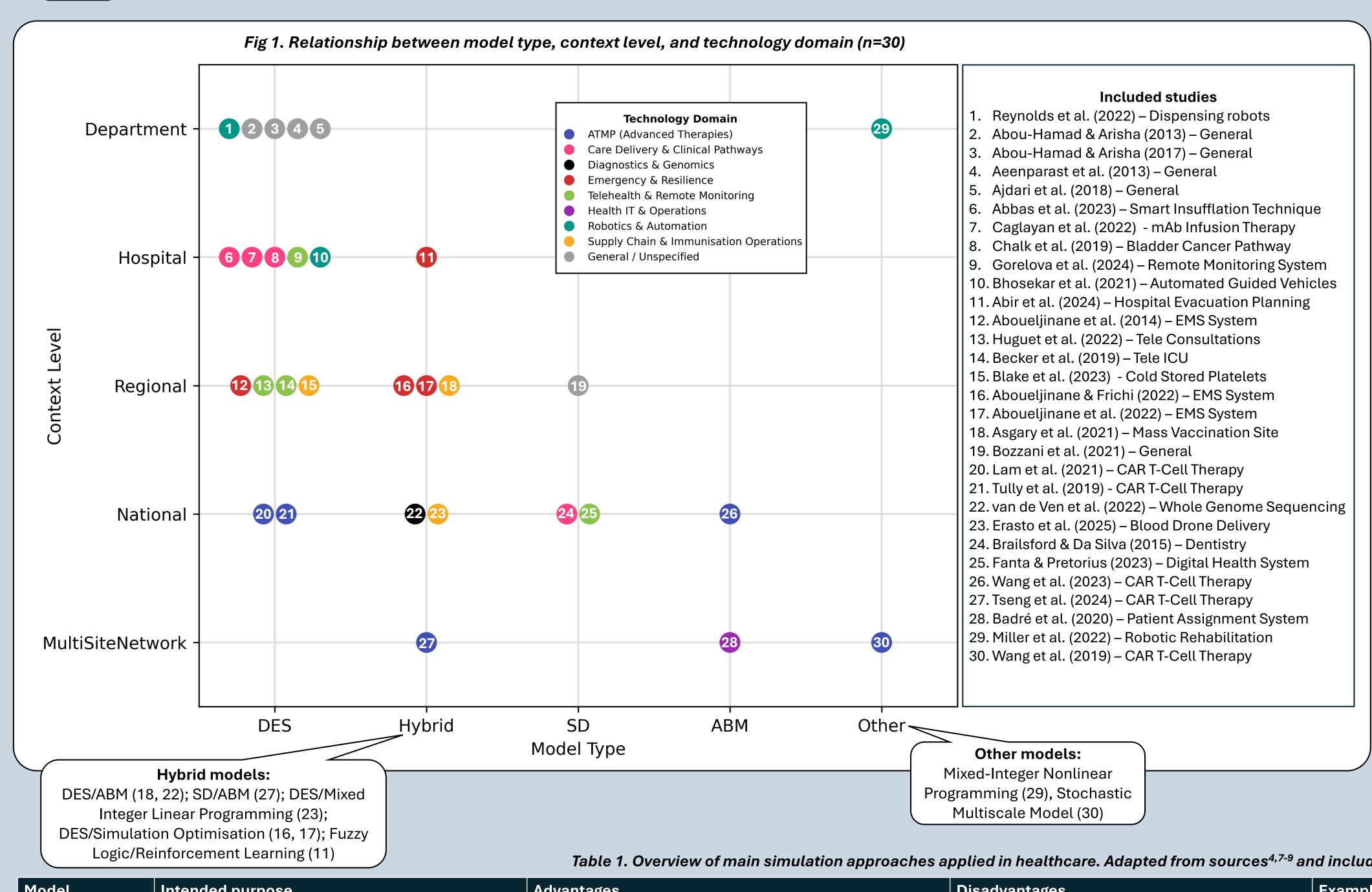
²Erasmus University Medical Centre, Erasmus University Rotterdam, The Netherlands

INTRODUCTION

- Healthcare systems are **complex adaptive systems** consisting of interacting agents that act autonomously, respond to their environment, and influence one another in dynamic, often unpredictable ways. 1,2
- Implementing complex health technologies requires systemic changes in care delivery, coordination, and infrastructure.
- Traditional HTA approaches often assume linear, isolated effects and fail to capture feedback, resource constraints, and emergent system behaviour.^{3,4}
- Systems-level modelling (e.g., discrete event simulation, system dynamics, agents-based modelling) can represent these interactions, asses operational feasibility, and support more realistic implementation planning.

OBJECTIVE

To synthesise how systems-level modelling is applied to evaluate and support implementation of complex health technologies within healthcare delivery systems.


- We define **complex health technologies** as interventions that may be complex in their design or in their implementation, requiring adaption of existing processes for effective use (e.g., cell and gene therapies, AI-assisted diagnostics, or digital health systems)
- This review aims to:
 - Classify model types and application contexts
 - Assess complexity using the SIMULATE framework (System, Interaction, Multilevel, Understanding, Loops, Time, Emergence).⁵
 - Examine model limitations and whether models informed realworld decisions or remained conceptual.

METHOD

- Systematic searches were conducted in Web of Science, Embase, MEDLINE (Ovid), and CINAHL (EBSCO) covering 2000-2025.
- The **search** strategy combined terms for: simulation and modelling methods + health technologies and interventions + healthcare context.
- Searches retrieved **5,542 records** after duplicates were removed.
- Screening and selection follow PRISMA principles using **ASReview** for semi-automated title/abstract screening.6
- Screening is **ongoing**: 30 studies currently included for full text.

PRELIMINARY RESULTS

30 empirical studies included to date, screening ongoing.

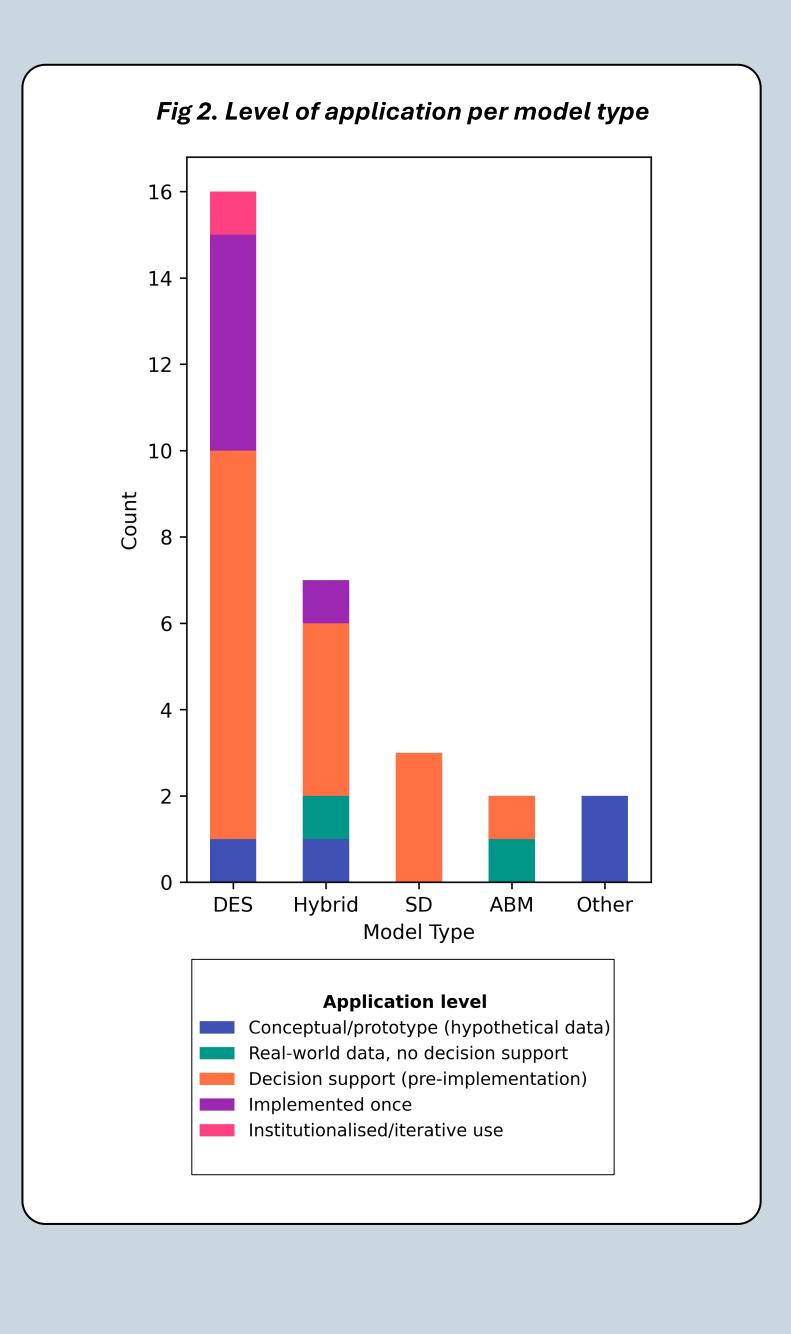


Table 1. Overview of main simulation approaches applied in healthcare. Adapted from sources^{4,7-9} and included studies.

Model	Intended purpose	Advantages	Disadvantages	Example
Discrete Event Simulation (DES)	DES analyses individual-level processes and queues; resource use; discrete event for optimisation, prediction, and comparison.	Captures heterogeneity and time-varying attributes; good for operational and queueing problems, flexible and updatable.	Data- and time-intensive; programming and calibration can be heavy.	10 Bhosekar et al. (2021) developed a <i>DES</i> + optimisation framework to redesign a hospital's automated material-handling system, improving the efficiency of surgical case delivery using automated guided vehicles.
Agent Based Model (ABM)	ABM focuses on agents with local rules; interactions, learning, and emergent behaviours in adaptive systems.	Captures relationship networks; fits public health and infrastructure planning; handles deterministic and stochastic processes; tests behavioural responses.	Data-hungry; long build and calibration time; coding burden.	Fanta & Pretorius (2023) built an SD model to examine sociotechnical feedback loops in digital-health implementation, linking technology acceptance, information quality and user satisfaction in Ethiopian hospitals.
System Dynamics (SD)	SD analyses system-level stocks, flows, delays, and feedback; simulates behaviour over time (qualitative or quantitative).	Reveals feedbacks and emergent behaviour; suited for nonlinear, complex systems; has been used to test and compare policy and management interventions.	Limited individual-level detail; validation often qualitative if data is weak.	Wang et al. (2023) applied <i>ABM</i> within a simulation of CAR T-cell therapy logistics to represent interacting hospitals, manufacturing sites, and couriers.
Hybrid Model	Hybrid models combine methods when one is insufficient; integrates levels and subsystems for complex decisions.	Leverages complementary strengths; improves realism and validity; allows best-fit method per subsystem; supports learning and decision-making.	Higher model complexity; extra effort to link methods; harder verification and validation across modules.	22 Van de Ven et al. (2022) combined <i>DES and ABM</i> to support nationwide implementation of whole genome sequencing for lung-cancer care.

ONGOING ANALYSIS

- Full-text screening and data extraction are ongoing for remaining studies
- Comparative analysis focuses on:
 - Complexity of technologies: how definitions of 'complex' or 'disruptive' vary across studies.
 - **SIMULATE-coverage:** whether models address all complexity dimensions or emphasise selected elements.
 - Model limitations: how authors document constraints, assumptions, or validation challenges.
 - Model evaluation: whether hybrid models are more often implemented or updated over time.
- Findings will inform recommendations on how to model complex health technology implementation more systematically and transparently.

Are you a hospital pharmacist? Contribute to our EU-wide survey on compounding advanced therapies:

Erasmus School of Health Policy & Management

REFERENCES

- 1. Plsek, P. E., & Greenhalgh, T. (2001). The challenge of complexity in health care. Bmj, 323(7313), 625-628. 2. Ratnapalan, S., & Lang, D. (2020). Health care organizations as complex adaptive systems. The health care manager,
- 3. Richardson, M., Ramsay, L. C., Bielecki, J. M., Berta, W., & Sander, B. (2021). Systems thinking in health technology
- assessment: a scoping review. International Journal of Technology Assessment in Health Care, 37(1), e71. Marshall, D. A., Grazziotin, L. R., Regier, D. A., Wordsworth, S., Buchanan, J., Phillips, K., & Ijzerman, M. (2020). Addressing challenges of economic evaluation in precision medicine using dynamic simulation modeling. Value in
- 5. Marshall, D. A., Burgos-Liz, L., IJzerman, M. J., Osgood, N. D., Padula, W. V., Higashi, M. K., ... & Crown, W. (2015).
- Applying dynamic simulation modeling methods in health care delivery research—the SIMULATE checklist: report of the ISPOR simulation modeling emerging good practices task force. Value in health, 18(1), 5-16. Van De Schoot, R., De Bruin, J., Schram, R., Zahedi, P., De Boer, J., Weijdema, F., ... & Oberski, D. L. (2021). An open source machine learning framework for efficient and transparent systematic reviews. Nature machine intelligence,
- 3(2), 125-133. 7. Vázquez-Serrano, J. I., Peimbert-García, R. E., & Cárdenas-Barrón, L. E. (2021). Discrete-event simulation modeling in
- healthcare: a comprehensive review. International journal of environmental research and public health, 18(22), 12262. 8. Davahli, M. R., Karwowski, W., & Taiar, R. (2020). A system dynamics simulation applied to healthcare: A systematic
- review. International journal of environmental research and public health, 17(16), 5741. 9. Brailsford, S. C., Eldabi, T., Kunc, M., Mustafee, N., & Osorio, A. F. (2019). Hybrid simulation modelling in operational research: A state-of-the-art review. European Journal of Operational Research, 278(3), 721-737.

https://nanospresso.eu/

health, 23(5), 566-573.

LOCAL PREPARATION OF HIGH-QUALITY, PERSONALISED NUCLEIC ACID NANOMEDICINES